Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell Death Differ ; 14(6): 1202-10, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17347668

RESUMO

Hepatocellular carcinoma (HCC) is a major public health concern because of the absence of early diagnosis and effective treatments. Efficient diagnosis modalities and therapies to treat HCC are needed. Kruppel-like factor (KLF) family members, such as KLF6, are involved in cell proliferation and differentiation. KLF6 is inactivated in solid tumors, which may contribute to pathogenesis. However, KLF6 status in HCC is controversial. Thus, we undertook the characterization of KLF6 expression and function in HCC and HCC-derived cell lines. We found that HCC, HepG2 and HuH7 cells expressed KLF6 messenger ribonucleic acid and protein. Next, using RNA interference, we demonstrated that inhibiting KLF6 expression in vitro strongly impaired cell proliferation-induced G1-phase arrest, inhibited cyclin-dependent kinase 4 and cyclin D1 expression, and subsequent retinoblastoma phosphorylation. Finally, KLF6 silencing caused p53 upregulation and inhibited Bcl-xL expression, to induce cell death by apoptosis. Taken together, these data demonstrated that KLF6 is essential for HCC-derived cells to evade apoptosis.


Assuntos
Apoptose/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Apoptose/genética , Sequência de Bases , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Dados de Sequência Molecular , Mutação , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína do Retinoblastoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
2.
Gut ; 56(1): 107-14, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16891358

RESUMO

BACKGROUND: Peritoneal carcinomatosis from pancreatic cancer has a poor prognosis with a median survival of 3.1 months. This is mainly due to lack of effective treatment. Interleukin 12 (IL12) is a proinflammatory cytokine that has a potent antitumoral effect by stimulating innate and adoptive immunity. AIM: To examine the antitumoral effect and toxicity of intraperitoneal delivery of IL12 using an ex vivo gene therapy approach in a murine model of pancreatic peritoneal carcinomatosis. METHODS: Peritoneal carcinomatosis was generated by direct intraperitoneal inoculation of the pancreatic cancer cell line Capan-1 in athymic mice. Syngenic fibroblasts were genetically modified in vitro to secrete IL12 using a polycistronic TFG murine IL12 retroviral vector coding for both p35 and p40 murine IL12 subunits. Ex vivo gene therapy involved injection of the genetically modified fibroblasts intraperitoneally twice a week for 4 weeks. RESULTS: Treatment of pre-established peritoneal carcinomatosis with fibroblasts genetically modified to express IL12 induced a marked inhibition of tumour growth as measured by comparison of the weights of the intraperitoneal tumour nodules in the treated and control animals (3.52 (SD 0.47) v 0.93 (SD 0.21) g, p<0.05) and improved survival. This effect was associated with infiltration of the peritoneal tumour nodules with macrophages. Peritoneal lavage confirmed enhancement of the innate peritoneal inflammatory activity, with an increased number of activated macrophages and natural killer cells. Moreover, macrophages harvested from animals with peritoneal carcinomatosis and treated with IL12-expressing fibroblasts expressed an activated proinflammatory antitumoral M1 phenotype that included strongly enhanced reactive oxygen species and nitric oxide production. There was no treatment-related toxicity. CONCLUSION: Multiple injections of genetically modified fibroblasts to express IL12 is an effective and well-tolerated treatment for experimental murine pancreatic peritoneal carcinomatosis via activated innate immunity and in particular activated M1 macrophages.


Assuntos
Antineoplásicos/imunologia , Fibroblastos/imunologia , Terapia Genética/métodos , Interleucina-12/imunologia , Neoplasias Peritoneais/terapia , Animais , Divisão Celular/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Citometria de Fluxo/métodos , Imunidade Inata/imunologia , Imuno-Histoquímica/métodos , Injeções Intraperitoneais , Interleucina-12/administração & dosagem , Interleucina-12/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Óxido Nítrico/biossíntese , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/imunologia , Espécies Reativas de Oxigênio/metabolismo
3.
Cell Death Differ ; 14(2): 197-208, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16645635

RESUMO

Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.


Assuntos
Apoptose , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptores de Somatostatina/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Somatostatina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Camundongos , Modelos Biológicos , Mimetismo Molecular/efeitos dos fármacos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1 , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
4.
Cancer Gene Ther ; 14(1): 19-29, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16990845

RESUMO

Pancreatic cancer is one of the most aggressive and devastating human malignancies. There is an urgent need for more effective therapy for patients with advanced disease. In this context, genetic therapy potentially represents a rational new approach to treating pancreatic cancer, which could provide an adjunct to conventional options. Because of the promise of recombinant SV40 vectors, we tested their ability to deliver a transgene, and to target a transcript, so as to inhibit pancreatic tumors growth in vivo. BxPC3 and Capan-1 cells were efficiently transduced using SV40 vectors without selection, as compared to synthetic vectors PEI. SV40 vectors were as efficient as adenoviral vectors, and provided long-term transgene expression. Next, we devised a SV40-derived, targeted gene therapy approach of pancreatic cancer, by combining hTR tumor-specific promoter with sst2 somatostatin receptor tumor-suppressor gene. In vitro cell proliferation was strongly impaired following administration of SV(hTR-sst2). SV40-derived sst2-mediated antiproliferative effect was dependent on the local production of somatostatin. In vivo, intratumoral gene transfer of sst2 using rSV40 vectors resulted in a marked inhibition of Capan-1 tumor progression, and proliferation. These results represent the initial steps toward a novel approach to the gene therapy of pancreatic cancer using SV40 as a vector.


Assuntos
Vírus Defeituosos/fisiologia , Técnicas de Transferência de Genes , Neoplasias Pancreáticas/patologia , Vírus 40 dos Símios/fisiologia , Replicação Viral , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Reação em Cadeia da Polimerase , Transdução Genética
5.
Cell Mol Life Sci ; 62(11): 1267-74, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15905964

RESUMO

Ornithine decarboxylase (ODC) is the ratelimiting enzyme in the biosynthesis of polyamines, which are required for optimal cell growth and proliferation. ODC is overexpressed in many tumors and, conversely, its overexpression induces transformation. We have previously reported that ODC mRNA alternative splicing relieves the translation repression normally imposed by a long and structured 5' untranslated region (UTR), and that the ODC 5' UTR contains an internal ribosome entry site (IRES). Here we show that ODC IRES activity is enhanced following inclusion of alternative sequences generated by splicing at cryptic acceptor sites. Furthermore, the alternative ODC IRES is more sensitive to cell-cycledependent changes in the rate of translation. These findings uncover a new biological property of differentially spliced transcripts. This is the first example of alternative splicing that modulates mRNA translation through the cell cycle in a cap-independent manner.


Assuntos
Processamento Alternativo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/metabolismo , Células HeLa , Humanos , RNA Mensageiro/genética
6.
Mol Cell ; 5(4): 607-16, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10882097

RESUMO

The eukaryotic mRNA 5' cap structure facilitates translation. However, cap-dependent translation is impaired at mitosis, suggesting a cap-independent mechanism for mRNAs translated during mitosis. Translation of ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, peaks twice during the cell cycle, at the G1/S transition and at G2/M. Here, we describe a cap-independent internal ribosome entry site (IRES) in the ODC mRNA that functions exclusively at G2/M. This ensures elevated levels of polyamines, which are implicated in mitotic spindle formation and chromatin condensation. c-myc mRNA also contains an IRES that functions during mitosis. Thus, IRES-dependent translation is likely to be a general mechanism to synthesize short-lived proteins even at mitosis, when cap-dependent translation is interdicted.


Assuntos
Regiões 5' não Traduzidas , Interfase/fisiologia , Ornitina Descarboxilase/biossíntese , Iniciação Traducional da Cadeia Peptídica/genética , Capuzes de RNA , Códon de Iniciação , Indução Enzimática/efeitos dos fármacos , Fase G1/fisiologia , Fase G2/fisiologia , Células HeLa , Humanos , Picornaviridae/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Sirolimo/farmacologia
7.
FEBS Lett ; 445(2-3): 251-5, 1999 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-10094466

RESUMO

The molecular events whereby gastrin occupancy of G/CCK(B) receptors leads to phosphatidylinositol (PI) 3-kinase activation have been examined. We report here that this peptide promotes the association between two non-receptor tyrosine kinases, p60Src and p125FAK, and elicits a parallel increase in tyrosine phosphorylation and activity of both kinases. Gastrin-induced PI 3-kinase activity was coprecipitated with p60Src and p125FAK and was inhibited by herbimycin A, the selective Src inhibitor PP-2 or cytochalasin D, which disrupts the actin cytoskeleton and prevents p125FAK activity. These results indicate, for the first time, that a p60Src/p125FAK complex acts upstream of the gastrin-stimulated PI 3-kinase pathway.


Assuntos
Moléculas de Adesão Celular/metabolismo , Gastrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , Animais , Ativação Enzimática , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Gastrinas/farmacologia , Fosforilação , Testes de Precipitina , Ratos , Células Tumorais Cultivadas , Tirosina/metabolismo
8.
Oncogene ; 16(17): 2219-27, 1998 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-9619831

RESUMO

Gastrin via its G-protein coupled specific receptor induces transcription of c-fos and c-jun genes through a ras-MAPK pathway. Ornithine Decarboxylase (ODC), a growth regulated proto-oncogene, was chosen to investigate gastrin effects on translation initiation of mRNAs exhibiting a 5'UnTranslated Region (5'UTR) responsible for translation repression in quiescent cells. In AR4-2J tumoral cells, we first demonstrated that gastrin increases ODC mRNA translation. Transient transfections with various CAT chimeric constructs suggested a direct involvement of the 5'UTR in this observation. Translation of this group of mRNAs is enhanced by the availability of the cap-binding protein (eIF4E) that is increased after phosphorylation of its specific binding protein eIF4E-BP1. We found that AR4-2J cells over-expressed eIF4E protein which was not modulated by gastrin treatment. Rapamycin which inhibits 4E-BP1 phosphorylation, completely prevents gastrin-mediated increase of ODC translation indicating that 4E-BP1 could be involved in regulating ODC translation. Implication of 4E-BP1 in mediating gastrin effects is corroborated by the capacity of the ligand to affect 4E-BP1 phosphorylation. These results indicate that gastrin enhances ornithine decarboxylase mRNA translation through a rapamycin sensitive pathway and provide the first evidence in the control of 4E-BP1 phosphorylation after occupancy of a G protein-coupled receptor.


Assuntos
Proteínas de Transporte , Gastrinas/farmacologia , Ornitina Descarboxilase/genética , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , Animais , Células COS , Indução Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Ornitina Descarboxilase/biossíntese , Inibidores da Ornitina Descarboxilase , Fosforilação/efeitos dos fármacos , Polienos/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Ratos , Proteínas Repressoras/farmacologia , Sirolimo , Células Tumorais Cultivadas
9.
Int J Cancer ; 75(2): 239-45, 1998 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-9462714

RESUMO

Gastrin/CCK(B) G protein-coupled receptors have been shown to mediate proliferation stimulated by their endogenous ligands. The present study demonstrates the proliferative effect of arachidonic acid on AR4-2J cells. Gastrin induces an [3H]arachidonic-acid release in a dose-dependent manner. The use of a specific inhibitor of cPLA2, AACOCF3 established the involvement of a cPLA2 in the proliferative effect of gastrin. The results also demonstrate that a cytosolic high-molecular-weight PLA2 is activated by gastrin in AR4-2J cells.


Assuntos
Ácido Araquidônico/fisiologia , Gastrinas/farmacologia , Fosfolipases A/fisiologia , Animais , Cálcio/metabolismo , Divisão Celular , Linhagem Celular , Citosol/enzimologia , Ativação Enzimática , Fosfolipases A2 , Ratos
10.
Biochem Biophys Res Commun ; 238(1): 202-6, 1997 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-9299479

RESUMO

The gastrin/CCKB (G/CCKB) G protein-coupled receptor has been shown to mediate the proliferative effects of gastrin on normal and neoplastic gastro-intestinal tissues. In the present study, we examined the signal transduction mechanisms coupled to this receptor. We report here that phosphorylation and activity of the p70S6K, whose major substrate is the ribosomal S6 protein, are enhanced in response to gastrin. These effects were completely reversed by a commonly used PI-3-kinase inhibitor, wortmannin, suggesting that p70S6K may be a downstream target of PI-3-kinase in a signaling cascade induced by gastrin. In addition, blocking PI-3-kinase activity by wortmannin partially decreased gastrin-induced MAPK activation (42% +/- 3) as well as the tyrosine phosphorylation of She (50% +/- 6), an upstream regulator of the Ras-dependent MAPK pathway. These results indicate that at least two signaling pathways lead to MAPK activation by gastrin, only one of which is sensitive to PI-3-kinase inhibitors.


Assuntos
Androstadienos/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Gastrinas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores da Colecistocinina/fisiologia , Proteínas Ribossômicas/metabolismo , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Gastrinas/metabolismo , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Polienos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Receptor de Colecistocinina B , Proteínas Quinases S6 Ribossômicas , Sirolimo , Células Tumorais Cultivadas , Wortmanina , Domínios de Homologia de src/efeitos dos fármacos
11.
Biochem J ; 325 ( Pt 2): 383-9, 1997 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-9230117

RESUMO

The proliferative effects of gastrin on normal and neoplastic gastro-intestinal tissues have been shown to be mediated by the gastrin/CCKB (G/CCKB) G-protein-coupled receptors. We have recently reported that gastrin stimulates the tyrosine phosphorylation of Shc proteins and their subsequent association with the Grb2/Sos complex, leading to mitogen-activated protein kinase (MAPK) activation, a pathway known to play an important role in cell proliferation. We undertook the present study to characterize the signalling pathways used by this receptor to mediate the activation of the Shc/Grb2 complex. Since G/CCKB receptor occupancy leads to the activation of the phospholipase C (PLC)/protein kinase C (PKC) pathway, we examined whether PKC stimulation and Ca2+ mobilization contribute to the phosphorylation of Shc proteins and their association with Grb2 in response to gastrin. Our results indicate that Shc proteins are tyrosine phosphorylated and associate with Grb2 in response to phorbol esters, suggesting that activation of PKC is a potential signalling pathway leading to activation of the Shc/Grb2 complex. Inhibition of PKC by GF109203X completely blocked the effect of PMA on Shc tyrosine phosphorylation and its subsequent association with Grb2, but had a partial inhibitory effect on the response to gastrin. Depletion of the intracellular Ca2+ pools by treatment with thapsigargin blocked the increase in intracellular free calcium concentration induced by gastrin and diminished the ability of the peptide to stimulate Shc phosphorylation and recruitment of Grb2. In addition, removal of extracellular Ca2+ partially inhibited the effect of gastrin on Shc phosphorylation as well as its association with Grb2, indicating that the effects of gastrin are also mediated by Ca2+-dependent mechanisms. Furthermore, we show that blockage of the two major early signals generated by activation of PLC, which induced the activation of the Shc/Grb2 complex, also blocked gastrin-induced MAPK activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Gastrinas/farmacologia , Proteínas Quinases Ativadas por Mitógeno , Proteína Quinase C/metabolismo , Proteínas/metabolismo , Animais , Western Blotting , Ativação Enzimática , Proteína Adaptadora GRB2 , Humanos , Proteína Quinase 3 Ativada por Mitógeno , Neoplasias Experimentais , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Ratos , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais/fisiologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Acetato de Tetradecanoilforbol/farmacologia , Tapsigargina/farmacologia , Células Tumorais Cultivadas , Tirosina/metabolismo
12.
Biochem Biophys Res Commun ; 236(3): 687-92, 1997 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-9245714

RESUMO

Glycine-extended gastrin precursors (G-Gly) were considered as processing intermediates devoid of biological activity. However, we have recently identified selective receptors for G-Gly which mediate the proliferative effects of this precursor. Little is known about the signaling pathways activated by G-Gly. In the present study, we demonstrate that PI-3-kinase is rapidly and transiently activated by G-Gly. We also observed a rapid increase in the tyrosine phosphorylation of IRS-1 and an activation of the PI-3-kinase in anti-IRS-1 immunoprecipitates, suggesting that PI-3-kinase may be activated by association with tyrosine phosphorylated IRS-1. We also demonstrated that gastrin precursors activate the serine/threonine kinase, p70 kDa S6 kinase (p70S6K), through a wortmannin sensitive pathway.


Assuntos
Gastrinas/farmacologia , Glicina/farmacologia , Fosfoproteínas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotirosina/metabolismo , Precursores de Proteínas/farmacologia , Androstadienos/farmacologia , Animais , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Proteínas Substratos do Receptor de Insulina , Cinética , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Células Tumorais Cultivadas , Wortmanina
13.
Digestion ; 57(6): 453-63, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8913708

RESUMO

Caerulein-induced pancreatitis (CIP) in rats is characterized by oedema and cell necrosis followed by spontaneous regeneration. The ras protein as well as ornithine decarboxylase (ODC) play a central role in the transmission of signals induced by growth factors. Therefore, we analyzed these gene products during the course of CIP and during the regeneration of the gland. Growth and biochemical parameters (pancreatic weight, total DNA, RNA and proteins) were determined along with ODC activity and quantitative reverse-transcriptase polymerase chain reaction measurements of mRNA levels. During CIP, the significant increases in pancreatic weight were the result of oedema. During that period, maximal increases in ODC activity were observed at 3 h, in ODC mRNA expression at 2, 3, and 4 h, and in Ki-ras mRNA expression at 1 h. During the 3-day resting period within which no treatment was given, pancreatic weight exhibited its maximal reduction after 2 days in the CIP group. In that same group, the ODC activity reached its maximal level above control after 3 days and ODC and Ki-ras mRNA expression after 1 and 2 days. During the regeneration period of 5 days, the pancreata of the untreated pancreatitis rats did not totally recover, whereas those of the animals receiving the small dose of caerulein (1 microgram) showed full recovery and even a significant increase above control after 5 days. During that period, maximal increases in ODC activity and Ki-ras mRNA expression occurred after 1 day of caerulein treatment; ODC mRNA expression was also significantly increased after 3 and 5 days in the pancreatitis animals with no effect of caerulein treatment. The positive effect of caerulein on Ki-ras mRNA suggests that the cholecystokinin analogue can induce the expression of essential growth-promoting genes.


Assuntos
Expressão Gênica , Genes ras/genética , Ornitina Descarboxilase/genética , Pancreatite/genética , Doença Aguda , Animais , Peso Corporal , Ceruletídeo , DNA/metabolismo , Masculino , Ornitina Descarboxilase/metabolismo , Pâncreas/enzimologia , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/enzimologia , Pancreatite/patologia , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
14.
J Biol Chem ; 271(42): 26356-61, 1996 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-8824290

RESUMO

The growth-promoting effects of gastrin on normal and neoplastic gastrointestinal tissues have been shown to be mediated by the gastrin/CCKB receptor, which belongs to the family of G protein-coupled receptors. However, the downstream signaling pathways activated by gastrin are not well characterized. In the present study, we demonstrate that gastrin stimulates tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), the major cytoplasmic substrate of the insulin receptor. The gastrin-induced phosphorylation of IRS-1 was rapid and transient, occurring within 30 s of treatment and diminishing thereafter. IRS-1 binds several proteins containing Src homology 2 domains through its multiple tyrosine phosphorylation sites. Following gastrin stimulation, we observed a time- and dose-dependent association of IRS-1 with the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase). In addition, activation of PI 3-kinase was detected in anti-IRS-1 immunoprecipitates from gastrin-treated cells, suggesting that tyrosine phosphorylation of IRS-1, which leads to the rapid recruitment of p85, might be one mechanism used by gastrin to activate PI 3-kinase. We have previously reported that tyrosine phosphorylation of Shc and its association with the Grb2-Sos complex may contribute to the activation of the mitogen-activated protein kinase pathway by gastrin. We report here that Grb2 also interacts with tyrosine-phosphorylated IRS-1 in response to gastrin. Taken together, our results suggest that IRS-1 may serve as a converging target in the signaling pathways stimulated by receptors that belong to different families, such as the gastrin/CCKB G protein-coupled receptor and the insulin receptor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Receptores ErbB/metabolismo , Gastrinas/farmacologia , Fosfoproteínas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas/metabolismo , Tirosina/metabolismo , Animais , Ativação Enzimática , Proteína Adaptadora GRB2 , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Pâncreas/efeitos dos fármacos , Pâncreas/enzimologia , Fosfatidilinositol 3-Quinases , Fosforilação , Ratos , Células Tumorais Cultivadas
15.
Cell Calcium ; 19(6): 495-500, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8842516

RESUMO

For the first time, we have demonstrated in AR4-2J cells, an experimental model of azaserine-induced carcinoma in the rat exocrine pancreas, the co-expression of alpha 1 subunit of dihydropyridine-sensitive Ca2+ channel and the alpha 1 sub-unit of omega-conotoxin-sensitive Ca2+ channel RNA messengers which share homologous sequences with, respectively, rbC II and rbB I sub-types described in the rat brain. These two types of voltage-dependent Ca2+ channels which are functionally expressed, emphasize the acquisition during carcinogenesis of neuroendocrine features of AR4-2J cells. Additionally, using antisense phosphorothioate oligodeoxynucleotide, we demonstrated clearly the involvement of dihydropyridine-sensitive Ca2+ channels in the control of AR4-2J cell proliferation.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Elementos Antissenso (Genética)/genética , Sequência de Bases , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Carcinoma/induzido quimicamente , Carcinoma/genética , Carcinoma/patologia , Divisão Celular/genética , Divisão Celular/fisiologia , Primers do DNA/química , Di-Hidropiridinas/farmacologia , Relação Dose-Resposta a Droga , Venenos de Moluscos/farmacologia , Pâncreas/citologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Reação em Cadeia da Polimerase , Ratos , Células Tumorais Cultivadas
16.
Int J Cancer ; 66(5): 653-8, 1996 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-8647628

RESUMO

Glycine-extended gastrin (gastrin-Gly) stimulates proliferation of AR4-2J pancreatic tumor cell line through a specific receptor, different from the gastrin-cholecystokinin B receptor. Our purpose was to determine whether AR4-2J cells produced gastrin-Gly and then whether the peptide was involved in an autocrine loop. First, proliferation of AR4-2J cells in serum-free medium was inhibited by a gastrin anti-sense oligodeoxynucleotide phosphorothioate and by antibodies specific for gastrin-Gly. In contrast, antibodies specific for alpha-amidated gastrin were without effect. By using RT-PCR, we have shown that AR4-2J cells expressed gastrin mRNA. The presence of gastrin-Gly, but not alpha-amidated gastrin, in serum-free media was detected by radioimmunoanalysis. Gel chromatography revealed that the predominant molecular forms secreted were glycine-extended gastrin-34 and gastrin- 17. Furthermore, epidermal growth factor (EGF), a stimulator of gastrin gene transcription, modulates gastrin-Gly secretion by AR4-2J. These data together suggest that gastrin-Gly is an autocrine growth factor for AR4-2J cells and that it participates with EGF in the regulation of AR4-2J-cell proliferation.


Assuntos
Gastrinas/fisiologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Sequência de Aminoácidos , Animais , Anticorpos/farmacologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Gastrinas/biossíntese , Gastrinas/metabolismo , Expressão Gênica , Humanos , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/farmacologia , Ratos , Estimulação Química , Tionucleotídeos/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos
17.
Cancer Res ; 56(8): 1742-5, 1996 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-8620486

RESUMO

The ornithine decarboxylase enzyme (ODC) is the key regulator of polyamine synthesis and is a member of the cellular proto-oncogene family. Its expression becomes constitutively activated by carcinogens, viruses, and oncogenes. ODC mRNA has a long 5' untranslated region that could be important in the regulation of enzyme levels by affecting translation. To test this hypothesis, we have determined the role of this region on the constitutive ODC hyperexpression measured in AR4-2J cells, an azaserine-induced, tumor-derived pancreatic acinar cell line. Construction of expression vectors in which ODC 5' leader sequence was placed flanking the chloramphenicol acetyltransferase reporter gene allowed us to identify three AR4-2J specific, different alternatively spliced ODC 5' leaders. The 5' ends of exons 2 and 3 were lengthened by 17 and 13 bases, respectively. Translation performed in a cell-free system as well as in COS7 transient transfection experiments demonstrated that AR4-2J isoforms induce a strong increase in the rate of translation. These results provide evidence that alternative splicing observed in tumoral cells, coupled with translation regulation, relieves the translation repression mediated by the long and structured 5' untranslated region of the ODC proto-oncogene.


Assuntos
Processamento Alternativo , Ornitina Descarboxilase/biossíntese , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Cloranfenicol O-Acetiltransferase/análise , Cloranfenicol O-Acetiltransferase/biossíntese , Chlorocebus aethiops , Primers do DNA , Repressão Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Dados de Sequência Molecular , Pâncreas , Neoplasias Pancreáticas , RNA Mensageiro/biossíntese , Ratos , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Mapeamento por Restrição , Transfecção , Células Tumorais Cultivadas
18.
J Clin Endocrinol Metab ; 81(3): 1164-8, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8772594

RESUMO

Somatostatin analogs are an alternative medical treatment in patients with TSH-secreting pituitary adenoma. A 31-yr-old infertile woman with a TSH-secreting macroadenoma was treated with continuous sc infusion of 300 micrograms octreotide/day. After 3 months, euthyroid status was restored, and pituitary magnetic resonance imaging showed a reduction of the macroadenoma. Subsequently, the patient was found to be pregnant, and octreotide was stopped after 1 month of gestation. Serum TSH and free thyroid hormone concentrations returned to pretreatment values. At 6 months of pregnancy, a visual field examination was abnormal, and a magnetic resonance imaging scan showed an enlargement of the pituitary adenoma. Reinstitution of octreotide treatment was associated with normalization of TSH and free thyroid hormone concentrations, a rapid improvement of visual fields, and a new reduction in the size of pituitary macroadenoma. Octreotide treatment was continued until an elective cesarean section was performed at 8 months gestation. Despite the presence of immunoreactive octreotide in the umbilical cord, neonatal thyroid parameters were normal, and a physiological rise in TSH with the increase in thyroid hormone concentrations occurred in the neonate. In conclusion, 1) octreotide treatment is effective in controlling TSH-secreting macroadenoma during pregnancy; 2) despite the transplacental passage of immunoreactive octreotide, physiological changes in thyroid parameters occur in the neonate, and 3) exposure of the fetus to octreotide during the first month as well as the last trimester of gestation did not induce any malformation or affect fetal development.


Assuntos
Adenoma/complicações , Adenoma/tratamento farmacológico , Infertilidade Feminina/complicações , Octreotida/uso terapêutico , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/tratamento farmacológico , Complicações Neoplásicas na Gravidez/tratamento farmacológico , Tireotropina/metabolismo , Adenoma/metabolismo , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Neoplasias Hipofisárias/metabolismo , Gravidez
19.
FEBS Lett ; 378(1): 74-8, 1996 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-8549807

RESUMO

Gastrin/CCKB G protein-coupled receptors have been shown to mediate proliferative effects of their endogenous ligands. In the present study, we examined the signal transduction mechanisms linked to the G/CCKB receptor occupancy. We report here that gastrin stimulates MAP kinase activation in a dose- and time-dependent manner, a pathway known to play a key role in cell proliferation. We also characterized the molecular events, upstream of p21-Ras, that may link the MAP kinase pathway to G/CCKB receptors. Gastrin induced a rapid and transient increase in tyrosine phosphorylation of several proteins including the 2 isoforms (46 and 52 kDa) of the adaptor protein Shc. Phosphorylated Shc subsequently associated with a complex that includes Grb2 and the p21-Ras activator, Sos. Our results also indicate that Sos becomes phosphorylated in response to gastrin as shown by a reduction in electrophoretic mobility of the protein. Tyrosine phosphorylation of Shc and subsequent complex formation with Grb2 and Sos appear to be a common mechanism by which tyrosine kinase receptors and the G/CCKB G protein-coupled receptor stimulate the Ras-dependent MAP kinase pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Gastrinas/farmacologia , Proteínas de Membrana/metabolismo , Fosfotirosina/metabolismo , Proteínas/metabolismo , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Proteína Adaptadora GRB2 , Cinética , Neoplasias Pancreáticas , Fosforilação , Ratos , Receptores da Colecistocinina/fisiologia , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais , Proteínas Son Of Sevenless , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Células Tumorais Cultivadas
20.
Pancreas ; 11(3): 230-5, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8577675

RESUMO

The importance of Ca2+ in the regulation of secretion is well-known. However, recent experiments suggest that a rise in intracellular Ca2+ (Ca2+i) does not necessarily trigger secretion in pancreatic acinar cells. In AR4-2J cells the role of the Ca2+ mobilization induced by cholecystokinin/gastrin (CCK/G), which is dependent of the intracellular calcium store and the calcium influx operating through voltage-dependent calcium channels, has never been directly demonstrated. Therefore, we attempted to determine whether Ca2+i and/or extracellular Ca2+ (Ca2+e) mobilized by CCK/G plays a role in the amylase secretion of these cells. We measured the [Ca2+]i by spectrofluorometry and amylase release in different experimental procedures modulating the two pools of calcium. Ionomycin increased both [Ca2+]i and amylase related. In Ca(2+)-depleted cells or in the presence of thapsigargin the transient rise in Ca2+i and the amylase secretion induced by CCK/G were suppressed. A 50 mM K+ solution or Bay K 8644, which activated the Ca2+ influx, did not induce any variation of the basal amylase secretion. Moreover, amylase secretion induced by CCK/G did not change significantly in Ca(2+)-free medium or in the presence of nifedipine. These results indicate that in AR4-2J cells, amylase secretion is dependent of the large increase in Ca2+i induced by CCK/G and independent of the Ca2+ influx through voltage-dependent calcium channels dihydropyridine sensitive.


Assuntos
Amilases/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Colecistocinina/farmacologia , Gastrinas/farmacologia , Líquido Intracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Amilases/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Líquido Intracelular/efeitos dos fármacos , Ativação do Canal Iônico , Ionomicina/farmacologia , Ionóforos/farmacologia , Nifedipino/farmacologia , Neoplasias Pancreáticas/patologia , Ratos , Espectrometria de Fluorescência , Terpenos/farmacologia , Tapsigargina , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA