Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 616(7958): 843-848, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37076626

RESUMO

Structural maintenance of chromosomes (SMC) protein complexes are essential for the spatial organization of chromosomes1. Whereas cohesin and condensin organize chromosomes by extrusion of DNA loops, the molecular functions of the third eukaryotic SMC complex, Smc5/6, remain largely unknown2. Using single-molecule imaging, we show that Smc5/6 forms DNA loops by extrusion. Upon ATP hydrolysis, Smc5/6 reels DNA symmetrically into loops at a force-dependent rate of one kilobase pair per second. Smc5/6 extrudes loops in the form of dimers, whereas monomeric Smc5/6 unidirectionally translocates along DNA. We also find that the subunits Nse5 and Nse6 (Nse5/6) act as negative regulators of loop extrusion. Nse5/6 inhibits loop-extrusion initiation by hindering Smc5/6 dimerization but has no influence on ongoing loop extrusion. Our findings reveal functions of Smc5/6 at the molecular level and establish DNA loop extrusion as a conserved mechanism among eukaryotic SMC complexes.


Assuntos
Proteínas de Ciclo Celular , Cromossomos Fúngicos , DNA Fúngico , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos/química , Cromossomos Fúngicos/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Hidrólise , Complexos Multiproteicos , Imagem Individual de Molécula , Coesinas
2.
Nat Struct Mol Biol ; 29(7): 719-727, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35835864

RESUMO

Condensin, a structural maintenance of chromosomes (SMC) complex, has been shown to be a molecular motor protein that organizes chromosomes by extruding loops of DNA. In cells, such loop extrusion is challenged by many potential conflicts, for example, the torsional stresses that are generated by other DNA-processing enzymes. It has so far remained unclear how DNA supercoiling affects loop extrusion. Here, we use time-lapse single-molecule imaging to study condensin-driven DNA loop extrusion on supercoiled DNA. We find that condensin binding and DNA looping are stimulated by positively supercoiled DNA, and condensin preferentially binds near the tips of supercoiled plectonemes. Upon loop extrusion, condensin collects nearby plectonemes into a single supercoiled loop that is highly stable. Atomic force microscopy imaging shows that condensin generates supercoils in the presence of ATP. Our findings provide insight into the topology-regulated loading and formation of supercoiled loops by SMC complexes and clarify the interplay of loop extrusion and supercoiling.


Assuntos
Adenosina Trifosfatases , DNA Super-Helicoidal , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA , Complexos Multiproteicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA