Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350902

RESUMO

Multi-subunit SMC complexes are required to perform essential functions, such as chromosome compaction, segregation and DNA repair, from bacteria to humans. Prokaryotic SMC proteins form complexes with two non-SMC subunits, ScpA and ScpB, to condense the chromosome. The mutants of both scpa and scpb genes in Bacillus subtilis have been shown to display characteristic phenotypes such as growth defects and increased frequency of anucleate cells. Here, we studied the function of the Smc-ScpAB complex from Mycobacterium smegmatis. We observed no significant growth difference between the scpb null mutant and wild-type M. smegmatis under both standard and stress conditions. Furthermore, we characterized the Smc-ScpAB holocomplex from M. smegmatis. The MsSMC consists of the dimerization hinge and ATPase head domains connected by long coiled-coils. The MsSMC interacts with two non-SMC proteins, ScpA and ScpB, and the resulting holocomplex binds to different DNA substrates independent of ATP. The Smc-ScpAB complex showed DNA-stimulated ATPase activity in the presence of ssDNA. A cytological profiling assay revealed that upon overexpression the Smc-ScpAB ternary complex compacts the decondensed nucleoid of rifampicin-treated wild-type and null mukb mutant of Escherichia coli in vivo. Together, our study suggests that M. smegmatis has a functional Smc-ScpAB complex capable of DNA binding and condensation. Based on our observations, we speculate that the presence of alternative SMCs such as MksB or other SMC homologues might have rescued the scpb mutant phenotype in M. smegmatis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mycobacterium smegmatis/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos , Mutação , Mycobacterium smegmatis/genética , Ligação Proteica , Domínios Proteicos , Multimerização Proteica
2.
Biochimie ; 171-172: 136-146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32145349

RESUMO

The structural maintenance of chromosomes (SMC) proteins play a vital role in genome stability and chromosome organization in all domains of life. Previous reports show that smc deletion causes decondensation of chromosome and an increased frequency of anucleated cells in bacteria. However, smc deletion in both Mycobacterium smegmatis and Mycobacterium tuberculosis did not affect chromosome condensation or the frequency of anucleated cells. In an attempt to understand this difference in M. smegmatis, we investigated the function of MksB (MsMksB), an alternate SMC-like protein. Like other bacterial SMCs, MsMksB is also an elongated homodimer, in which a central hinge domain connects two globular ATPase head domains via two coiled-coil arms. We show that full-length MsMksB binds to different topological forms of DNA without any preferences. However, the hinge and headless domains prefer binding to single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA), respectively. The binding of MsMksB to DNA was independent of ATP as its ATP hydrolysis deficient mutant was also proficient in DNA binding. Further, the cytological profiling studies revealed that only the full-length MsMksB and none of its structural domains could condense the bacterial chromosome. This observation indicates the plausibility of the concerted action of different structural domains of SMC to bind and condense the chromosome. Moreover, MsMksB exhibited DNA stimulated ATPase activity, in addition to its intrinsic ATPase activity. Taken together, we have elucidated the function of an alternate bacterial condensin protein MksB and its structural domains in DNA binding and condensation.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Ciclo Celular/fisiologia , Cromossomos Bacterianos/metabolismo , Proteínas de Ligação a DNA/fisiologia , Complexos Multiproteicos/fisiologia , Mycobacterium smegmatis/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA