RESUMO
Triggering receptor on myeloid cells 2 (TREM2) is an innate immune receptor, upregulated on the surface of microglia associated with amyloid plaques in Alzheimer's disease (AD). Individuals heterozygous for the R47H variant of TREM2 have greatly increased risk of developing AD. We examined the effects of wild-type (WT), R47H and knock-out (KO) of human TREM2 expression in three microglial cell systems. Addition of mouse BV-2 microglia expressing R47H TREM2 to primary mouse neuronal cultures caused neuronal loss, not observed with WT TREM2. Neuronal loss was prevented by using annexin V to block exposed phosphatidylserine, an eat-me signal and ligand of TREM2, suggesting loss was mediated by microglial phagocytosis of neurons exposing phosphatidylserine. Addition of human CHME-3 microglia expressing R47H TREM2 to LUHMES neuronal-like cells also caused loss compared to WT TREM2. Expression of R47H TREM2 in BV-2 and CHME-3 microglia increased their uptake of phosphatidylserine-beads and synaptosomes versus WT TREM2. Human iPSC-derived microglia with heterozygous R47H TREM2 had increased phagocytosis of synaptosomes vs common-variant TREM2. Additionally, phosphatidylserine liposomes increased activation of human iPSC-derived microglia expressing homozygous R47H TREM2 versus common-variant TREM2. Finally, overexpression of TREM2 in CHME-3 microglia caused increased expression of cystatin F, a cysteine protease inhibitor, and knock-down of cystatin F increased CHME-3 uptake of phosphatidylserine-beads. Together, these data suggest that R47H TREM2 may increase AD risk by increasing phagocytosis of synapses and neurons via greater activation by phosphatidylserine and that WT TREM2 may decrease microglial phagocytosis of synapses and neurons via cystatin F.
Assuntos
Doença de Alzheimer , Sinaptossomos , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cistatinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Neurônios/patologia , Fagocitose/genética , Fosfatidilserinas/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/patologiaRESUMO
Antibody therapies for Alzheimer's Disease (AD) hold promise but have been limited by the inability of these proteins to migrate efficiently across the blood brain barrier (BBB). Central nervous system (CNS) gene transfer by vectors like adeno-associated virus (AAV) overcome this barrier by allowing the bodies' own cells to produce the therapeutic protein, but previous studies using this method to target amyloid-ß have shown success only with truncated single chain antibodies (Abs) lacking an Fc domain. The Fc region mediates effector function and enhances antigen clearance from the brain by neonatal Fc receptor (FcRn)-mediated reverse transcytosis and is therefore desirable to include for such treatments. Here, we show that single chain Abs fused to an Fc domain retaining FcRn binding, but lacking Fc gamma receptor (FcγR) binding, termed a silent scFv-IgG, can be expressed and released into the CNS following gene transfer with AAV. While expression of canonical IgG in the brain led to signs of neurotoxicity, this modified Ab was efficiently secreted from neuronal cells and retained target specificity. Steady state levels in the brain exceeded peak levels obtained by intravenous injection of IgG. AAV-mediated expression of this scFv-IgG reduced cortical and hippocampal plaque load in a transgenic mouse model of progressive ß-amyloid plaque accumulation. These findings suggest that CNS gene delivery of a silent anti-Aß scFv-IgG was well-tolerated, durably expressed and functional in a relevant disease model, demonstrating the potential of this modality for the treatment of Alzheimer's disease.
Assuntos
Doença de Alzheimer/terapia , Sistema Nervoso Central/metabolismo , Vetores Genéticos/administração & dosagem , Fragmentos Fc das Imunoglobulinas/genética , Anticorpos de Cadeia Única/genética , Doença de Alzheimer/genética , Animais , Barreira Hematoencefálica , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Progressão da Doença , Terapia Genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos , Camundongos Transgênicos , Domínios Proteicos , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismoRESUMO
The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Tauopatias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Memória Espacial/fisiologia , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genéticaRESUMO
Beta-site APP cleaving enzyme 1 (BACE1) is the rate limiting enzyme for accumulation of amyloid ß (Aß)-peptide in the brain in Alzheimer's disease (AD). Oxidative stress (OS) that leads to metabolic dysfunction and apoptosis of neurons in AD enhances BACE1 expression and activity. The activation of c-jun N-terminal kinase (JNK) pathway was proposed to explain the BACE1 mRNA increase under OS. However, little is known about the translational control of BACE1 in OS. Recently, a post-transcriptional increase of BACE1 level controlled by phosphorylation of eIF2α (eukaryotic translation initiation factor-2α) have been described after energy deprivation. PKR (double-stranded RNA dependant protein kinase) is a pro-apoptotic kinase that phosphorylates eIF2α and modulates JNK activation in various cellular stresses. We investigated the relations between PKR, eIF2α and BACE1 in AD brains in APP/PS1 knock-in mice and in hydrogen peroxide-induced OS in human neuroblastoma (SH-SY5Y) cell cultures. Immunoblotting results showed that activated PKR (pPKR) and activated eIF2α (peIF2α) and BACE1 levels are increased in AD cortices and BACE1 correlate with phosphorylated eIF2α levels. BACE1 protein levels are increased in response to OS in SH-SY5Y cells and specific inhibitions of PKR-eIF2α attenuate BACE1 protein levels in this model. Our findings provide a new translational regulation of BACE1, under the control of PKR in OS, where eIF2α phosphorylation regulates BACE1 protein expression.
Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Estresse Oxidativo , eIF-2 Quinase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Transcrição Gênica , Ativação Transcricional , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genéticaRESUMO
The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques made of Aß peptide, neurofibrillary tangles containing hyperphosphorylated tau protein and neuronal loss. The pro-apoptotic kinase PKR can be activated by Aß and can phosphorylate tau protein via GSK3ß kinase activation. The activated form of PKR (pPKR) accumulates in affected neurons and could participate in neuronal degeneration in AD. The mechanism of abnormal PKR activation in AD is not elucidated but could be linked to the PKR activator PACT. PACT stainings, and levels were assessed in the brains of AD patients and in APP/PS1 knock-in transgenic mice and in cell cultures exposed to stresses. We showed that PACT and pPKR colocalizations are enhanced in AD brains. Their levels are increased and correlated in AD and APP/PS1 knock-in mice brains. In human neuroblastoma cells exposed to Aß, tunicamycin or H2O2, PACT and pPKR concentrations are increased. PACT then PKR inhibitions indicate that PACT is upstream of PKR activation. Our findings demonstrate that PACT levels are enhanced in AD brains and could partly be caused by the action of Aß. In addition, PACT participates in PKR activation. The PACT-PKR pathway represents a potential link between Aß accumulation, PKR activation and tau phosphorylation.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/fisiologia , Proteínas de Ligação a RNA/biossíntese , eIF-2 Quinase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais , Linhagem Celular Tumoral , Indução Enzimática/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fosforilação , Proteínas de Ligação a RNA/genética , Proteínas tau/metabolismoRESUMO
In Alzheimer's disease, neuropathological hallmarks include the accumulation of beta-amyloid peptides (Abeta) in senile plaques, phosphorylated tau in neurofibrillary tangles and neuronal death. Abeta is the major aetiological agent according to the amyloid cascade hypothesis. Translational control includes phosphorylation of the kinases mammalian target of rapamycin (mTOR) and p70S6k which modulate cell growth, proliferation and autophagy. It is mainly part of an anti-apoptotic cellular signalling. In this study, we analysed modifications of mTOR/p70S6k signalling in cellular and transgenic models of Alzheimer's disease, as well as in lymphocytes of patients and control individuals. Abeta 1-42 produced a rapid and persistent down-regulation of mTOR/p70S6k phosphorylation in murine neuroblastoma cells associated with caspase 3 activation. Using western blottings, we found that phosphorylated forms of mTOR and p70S6k are decreased in the cortex but not in the cerebellum (devoid of plaques) of double APP/PS1 transgenic mice compared with control mice. These results were confirmed by immunohistochemical methods. Finally, the expression of phosphorylated p70S6k was significantly reduced in lymphocytes of Alzheimer's patients, and levels of phosphorylated p70S6k were statistically correlated with Mini Mental Status Examination (MMSE) scores. Taken together, these findings demonstrate that the mainly anti-apoptotic mTOR/p70S6k signalling is altered in cellular and transgenic models of Alzheimer's disease and in peripheral cells of patients, and could contribute to the pathogenesis of the disease.
Assuntos
Peptídeos beta-Amiloides/fisiologia , Precursor de Proteína beta-Amiloide/genética , Proteínas de Membrana/genética , Proteínas Quinases/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Transdução de Sinais/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Pessoa de Meia-Idade , Presenilina-1 , Proteínas Quinases/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TORRESUMO
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the accumulation of extracellular depositions of fibrillar beta-amyloid (A beta), which is derived from the alternative processing of beta-amyloid precursor protein (APP). Although APP is thought to function as a cell surface receptor, its mode of action still remains elusive. In this study, we found that the culture medium derived from cortical neurons treated with an anti-APP antibody triggers the death of naive neurons. Biochemical and immunocytochemical analyses revealed the presence, both in the conditioned medium and in neurons, of increased levels of tumor necrosis factor-alpha and monocyte chemoattractant protein-1. Furthermore, the expression of these proinflammatory mediators occurred through a c-Jun N-terminal protein kinase/c-Jun-dependent mechanism. Taken together, our findings provide evidence for a novel mechanism whereby neuronal APP in its full-length configuration induces neuronal death. Such a mechanism might be relevant to neuroinflammatory processes as those observed in AD.
Assuntos
Precursor de Proteína beta-Amiloide/imunologia , Precursor de Proteína beta-Amiloide/metabolismo , Sítios de Ligação de Anticorpos/fisiologia , Córtex Cerebral/metabolismo , Quimiocina CCL2/biossíntese , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Quimiocina CCL2/genética , Meios de Cultivo Condicionados/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genéticaRESUMO
Heterologous expression and lesioning studies were conducted to identify possible subunit assembly partners in nicotinic acetylcholine receptors (nAChR) containing alpha6 subunits (alpha6(*) nAChR). SH-EP1 human epithelial cells were transfected with the requisite subunits to achieve stable expression of human alpha6beta2, alpha6beta4, alpha6beta2beta3, alpha6beta4beta3, or alpha6beta4beta3alpha5 nAChR. Cells expressing subunits needed to form alpha6beta4beta3alpha5 nAChR exhibited saturable [(3)H]epibatidine binding (K(d) = 95.9 +/- 8.3 pM and B(max) = 84.5 +/- 1.6 fmol/mg of protein). The rank order of binding competition potency (K(i)) for prototypical nicotinic compounds was alpha-conotoxin MII (6 nM) > nicotine (156 nM) approximately methyllycaconitine (200 nM) > alpha-bungarotoxin (>10 microM), similar to that for nAChR in dopamine neurons displaying a distinctive pharmacology. 6-Hydroxydopamine lesioning studies indicated that beta3 and alpha5 subunits are likely partners of the alpha6 subunits in nAChR expressed in dopaminergic cell bodies. Similar to findings in rodents, quantitative real-time reverse transcription-polymerase chain reactions of human brain indicated that alpha6 subunit mRNA expression was 13-fold higher in the substantia nigra than in the cortex or the rest of the brain. Thus, heterologous expression studies suggest that the human alpha5 subunit makes a critical contribution to alpha6beta4beta3alpha5 nAChR assembly into a ligand-binding form with native alpha6(*)-nAChR-like pharmacology and of potential physiological and pathophysiological relevance.
Assuntos
Receptores Nicotínicos/biossíntese , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Linhagem Celular , Membrana Celular/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , RNA/biossíntese , RNA/isolamento & purificação , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-Atividade , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismoRESUMO
In transgenic mice expressing human mutant beta-amyloid precursor protein (APP) and mutant presenilin-1 (PS1), Abeta antibodies labeled granules, about 1 microm in diameter, in the perikaryon of neurons clustered in the isocortex, hippocampus, amygdala, thalamus, and brainstem. The granules were present before the onset of Abeta deposits; their number increased up to 9 months and decreased in 15-month-old animals. They were immunostained by antibodies against Abeta 40, Abeta 42, and APP C-terminal region. In double immunofluorescence experiments, the intracellular Abeta co-localized with lysosome markers and less frequently with MG160, a Golgi marker. Abeta accumulation correlated with an increased volume of lysosomes and Golgi apparatus, while the volume of endoplasmic reticulum and early endosomes did not change. Some granules were immunolabeled with an antibody against flotillin-1, a raft marker. At electron microscopy, Abeta, APP-C terminal, cathepsin D, and flotillin-1 epitopes were found in the lumen of multivesicular bodies. This study shows that Abeta peptide and APP C-terminal region accumulate in multivesicular bodies containing lysosomal enzymes, while APP N-terminus is excluded from them. Multivesicular bodies could secondarily liberate their content in the extracellular space as suggested by the association of cathepsin D with Abeta peptide in the extracellular space.
Assuntos
Peptídeos beta-Amiloides/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Biotinilação , Western Blotting , Encéfalo/patologia , Catepsina D/fisiologia , Epitopos/química , Genótipo , Complexo de Golgi/metabolismo , Imuno-Histoquímica , Lisossomos/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Biológicos , Peptídeos/química , Presenilina-1 , Estrutura Terciária de ProteínaRESUMO
Increasing evidence suggests an important role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease. Thus, we investigated the effects of acute and chronic exposure to increasing concentrations of amyloid beta (Abeta) on mitochondrial function and nitric oxide (NO) production in vitro and in vivo. Our data demonstrate that PC12 cells and human embryonic kidney cells bearing the Swedish double mutation in the amyloid precursor protein gene (APPsw), exhibiting substantial Abeta levels, have increased NO levels and reduced ATP levels. The inhibition of intracellular Abeta production by a functional gamma-secretase inhibitor normalizes NO and ATP levels, indicating a direct involvement of Abeta in these processes. Extracellular treatment of PC12 cells with comparable Abeta concentrations only leads to weak changes, demonstrating the important role of intracellular Abeta. In 3-month-old APP transgenic (tg) mice, which exhibit no plaques but already detectable Abeta levels in the brain, reduced ATP levels can also be observed showing the in vivo relevance of our findings. Moreover, we could demonstrate that APP is present in the mitochondria of APPsw PC12 cells. This presence might be directly involved in the impairment of cytochrome c oxidase activity and depletion of ATP levels in APPsw PC12 cells. In addition, APPsw human embryonic kidney cells, which produce 20-fold increased Abeta levels compared with APPsw PC12 cells, and APP tg mice already show a significantly decreased mitochondrial membrane potential under basal conditions. We suggest a hypothetical sequence of pathogenic steps linking mutant APP expression and amyloid production with enhanced NO production and mitochondrial dysfunction finally leading to cell death.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Apoptose/fisiologia , Mitocôndrias/metabolismo , Óxido Nítrico/biossíntese , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Western Blotting , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Mutations in the parkin gene are responsible for autosomal recessive parkinsonism. The disease-linked missense mutations are highly concentrated in the RING-IBR-RING domains of Parkin. In this study, we investigated the consequences of several missense parkin gene mutations in cell culture. We have demonstrated that two of these mutations (C289G and C418R), which replace consensus cysteine residues in the RING domains, significantly decrease the solubility of Parkin in cells. Upon overexpression, the presumably misfolded proteins formed cytoplasmic aggregates that concentrated into large perinuclear inclusion bodies when proteasome activity was inhibited. This process required active microtubule-dependent retrograde transport, as previously reported for aggresome formation. These results provide information on the molecular basis of the loss of function caused by mutations of critical residues in Parkin. They also contribute to our understanding of the cellular mechanism underlying the aggregation of mutant Parkin.
Assuntos
Corpos de Inclusão/genética , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Cisteína Endopeptidases/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Substâncias Macromoleculares , Microtúbulos/metabolismo , Complexos Multienzimáticos/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Complexo de Endopeptidases do Proteassoma , Dobramento de Proteína , Estrutura Terciária de Proteína/genética , Transporte Proteico/fisiologia , Solubilidade , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismoRESUMO
Parkinson's disease (PD) is a severe neurological disorder, characterized by the progressive degeneration of the dopaminergic nigrostriatal pathway and the presence of Lewy bodies (LBs). The discovery of genes responsible for familial forms of the disease has provided insights into its pathogenesis. Mutations in the parkin gene, which encodes an E3 ubiquitin-protein ligase involved in the ubiquitylation and proteasomal degradation of specific protein substrates, have been found in nearly 50% of patients with autosomal-recessive early-onset parkinsonism. The abnormal accumulation of substrates due to loss of Parkin function may be the cause of neurodegeneration in parkin-related parkinsonism. Here, we demonstrate that Parkin interacts with, ubiquitylates and promotes the degradation of p38, a key structural component of the mammalian aminoacyl-tRNA synthetase complex. We found that the ubiquitylation of p38 is abrogated by truncated variants of Parkin lacking essential functional domains, but not by the pathogenic Lys161Asn point mutant. Expression of p38 in COS7 cells resulted in the formation of aggresome-like inclusions in which Parkin was systematically sequestered. In the human dopaminergic neuroblastoma-derived SH-SY5Y cell line, Parkin promoted the formation of ubiquitylated p38-positive inclusions. Moreover, the overexpression of p38 in SH-SY5Y cells caused significant cell death against which Parkin provided protection. Analysis of p38 expression in the human adult midbrain revealed strong immunoreactivity in normal dopaminergic neurons and the labeling of LBs in idiopathic PD. This suggests that p38 plays a role in the pathogenesis of PD, opening the way for a detailed examination of its potential non-canonical role in neurodegeneration.
Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Mesencéfalo/metabolismo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Animais , Células COS , Chlorocebus aethiops , Humanos , Corpos de Inclusão , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Mutação , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/fisiopatologia , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
Mutations in the presenilin genes PS1 and PS2 are a major cause of early onset familial Alzheimer's disease (AD). Previous studies have suggested that presenilins have several functions, including gamma-secretase activity. It was also shown that presenilin expression is increased in the brains of some AD patients and ischemic rodents. The present study examines the effect of increased presenilin expression on protein synthesis. We show here that overexpression of wild-type PS2 (PS2wt) or PS2 mutant containing the FAD mutation N141I (PS2mut) in various cell lines inhibits the synthesis of coexpressed reporter and endogenous proteins. Furthermore, endogenous PS2 seems to be needed for translation inhibition since PS2 null fibroblasts were translationally more active than PS2(+/+) fibroblasts under conditions known to inhibit translation. Overexpression of PS1 also appeared to cause inhibition of protein synthesis, but its effect was much weaker than that of PS2. Taken together, the results suggest that increased expression of PS2 and possibly also of PS1 inhibits translation and that presenilins may function as regulators of protein synthesis.