Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 8(1): 17-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866756

RESUMO

An outbreak with a remarkable Listeria monocytogenes clone causing 163 cases of non-invasive listeriosis occurred in Germany in 2015. Core genome multi locus sequence typing grouped non-invasive outbreak isolates and isolates obtained from related food samples into a single cluster, but clearly separated genetically close isolates obtained from invasive listeriosis cases. A comparative genomic approach identified a premature stop codon in the chiB gene, encoding one of the two L. monocytogenes chitinases, which clustered with disease outcome. Correction of this premature stop codon in one representative gastroenteritis outbreak isolate restored chitinase production, but effects in infection experiments were not found. While the exact role of chitinases in virulence of L. monocytogenes is still not fully understood, our results now clearly show that ChiB-derived activity is not required to establish L. monocytogenes gastroenteritis in humans. This limits a possible role of ChiB in human listeriosis to later steps of the infection.


Assuntos
Quitinases/genética , Surtos de Doenças , Gastroenterite/microbiologia , Listeria monocytogenes/classificação , Listeria monocytogenes/isolamento & purificação , Listeriose/epidemiologia , Adolescente , Adulto , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Células CACO-2 , Criança , Pré-Escolar , Códon de Terminação , Feminino , Microbiologia de Alimentos , Gastroenterite/epidemiologia , Genômica , Alemanha/epidemiologia , Células HeLa , Células Hep G2 , Humanos , Lactente , Listeria monocytogenes/enzimologia , Listeria monocytogenes/patogenicidade , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Filogenia , Fatores de Virulência/genética , Adulto Jovem
2.
PLoS One ; 10(4): e0122074, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25836671

RESUMO

A large outbreak of gastrointestinal disease occurred in 2011 in Germany which resulted in almost 4000 patients with acute gastroenteritis or hemorrhagic colitis, 855 cases of a hemolytic uremic syndrome and 53 deaths. The pathogen was an uncommon, multiresistant Escherichia coli strain of serotype O104:H4 which expressed a Shiga toxin characteristic of enterohemorrhagic E. coli and in addition virulence factors common to enteroaggregative E. coli. During post-epidemic surveillance of Shiga toxin-producing E. coli (STEC) all but two of O104:H4 isolates were indistinguishable from the epidemic strain. Here we describe two novel STEC O104:H4 strains isolated in close spatiotemporal proximity to the outbreak which show a virulence gene panel, a Shiga toxin-mediated cytotoxicity towards Vero cells and aggregative adherence to Hep-2 cells comparable to the outbreak strain. They differ however both from the epidemic strain and from each other, by their antibiotic resistance phenotypes and some other features as determined by routine epidemiological subtyping methods. Whole genome sequencing of these two strains, of ten outbreak strain isolates originating from different time points of the outbreak and of one historical sporadic EHEC O104:H4 isolate was performed. Sequence analysis revealed a clear phylogenetic distance between the two variant strains and the outbreak strain finally identifying them as epidemiologically unrelated isolates from sporadic cases. These findings add to the knowledge about this emerging pathogen, illustrating a certain diversity within the bacterial core genome as well as loss and gain of accessory elements. Our results do also support the view that distinct new variants of STEC O104:H4 repeatedly might originate from yet unknown reservoirs, rather than that there would be a continuous diversification of a single epidemic strain established and circulating in Germany after the large outbreak in 2011.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli Shiga Toxigênica , Animais , Aderência Bacteriana , Chlorocebus aethiops , DNA Bacteriano/genética , Surtos de Doenças , Infecções por Escherichia coli/epidemiologia , Genoma Bacteriano , Alemanha/epidemiologia , Células Hep G2 , Humanos , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sorogrupo , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Células Vero , Virulência/genética
3.
Mol Microbiol ; 79(4): 1024-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21299654

RESUMO

Tellurite (Tel) resistant enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is a global pathogen. In strain EDL933 Tel resistance (Tel(R) ) is encoded by duplicate ter cluster in O islands (OI) 43 and 48, which also harbour iha, encoding the adhesin and siderophore receptor Iha. We identified five EHEC O157:H7 strains that differentiate into large (L) colonies and small (S) colonies with high and low Tel minimal inhibitory concentrations (MICs) respectively. S colonies (Tel-MICs ≤ 4 µg ml⁻¹) sustained large internal deletions within the Tel(R) OIs via homologous recombination between IS elements and lost ter and iha. Moreover, complete excision of the islands occurred by site-specific recombination between flanking direct repeats. Complete excision of OI 43 and OI 48 occurred in 1.81 × 10⁻³ and 1.97 × 10⁻4 cells in culture, respectively; internal deletion of OI 48 was more frequent (9.7 × 10⁻¹ cells). Under iron limitation that promotes iha transcription, iha-negative derivatives adhered less well to human intestinal epithelial cells and grew slower than did their iha-positive counterparts. Experiments utilizing iha deletion and complementation mutants identified Iha as the major factor responsible for these phenotypic differences. Spontaneous deletions affecting Tel(R) OIs contribute to EHEC O157 genome plasticity and might impair virulence and/or fitness.


Assuntos
Aderência Bacteriana/genética , Instabilidade Cromossômica , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/genética , Telúrio/farmacologia , Linhagem Celular Tumoral , DNA Bacteriano/genética , Escherichia coli O157/patogenicidade , Ilhas Genômicas , Humanos , Família Multigênica , Fenótipo , Análise de Sequência de DNA , Deleção de Sequência , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA