Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829604

RESUMO

Hyperuricemia, an abnormally high level of blood uric acid, is a major risk factor for gout. Although xanthine oxidase inhibitors were clinically used to lower blood uric acid level, the concerned side effects restricted their utilization. In this study, strictinin, an abundant polyphenol in Pu'er tea, was evaluated for its preventive effects on hyperuricemia. The results showed that the xanthine oxidase activity, uric acid production, and inflammation in AML12 mouse hepatocytes treated with xanthine were significantly reduced by the supplementation of strictinin. Detailed analyses revealed that strictinin inhibited xanthine-induced NLRP3 inflammasome activation. Consistently, the elevated blood uric acid level and the enhanced xanthine oxidase activity in mice treated with potassium oxonate were effectively diminished by strictinin supplementation. Moreover, for the first time, strictinin was found to promote healthy gut microbiota. Overall, strictinin possesses a great potential to be utilized as a functional ingredient for the prevention of hyperuricemia.

2.
J Agric Food Chem ; 69(41): 12219-12229, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34632761

RESUMO

Foods contaminated by harmful substances such as bacteria and viruses have caused more than 200 kinds of diseases, ranging from diarrhea to cancer. Among them, Bacillus cereus (B. cereus) is a foodborne pathogen that commonly contaminates raw meat, fresh vegetables, rice, and uncooked food. The current chemical preservatives may have adverse effects on food and even human health. Therefore, natural antibacterial agents are sought after as alternative preservatives. Stilbene compounds, including pterostilbene (PT), pinostilbene (PS), and piceatannol (PIC), which have many health benefits and exhibit antibacterial activity, were tested against B. cereus. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of PT, PS, and PIC against B. cereus ranged from 25 to 100 µg/mL. From the time-kill curve assay, PT reduced B. cereus cell survival, increased intracellular reactive oxygen species (ROS), and induced apoptosis-like cell death (ALD) in a dose-dependent manner. The quantitative real-time polymerase chain reaction (qPCR) results confirmed that treatment with PT induced genetic changes related to ALD, such as an increase in RecA gene expression and a decrease in LexA gene expression. In addition, PT showed a beneficial effect on the gut microbiota that increased the abundance of Bacteroidetes and lowered the abundance of Firmicutes. Taken together, our results showed that PT has antibacterial effects against B. cereus via ALD and is beneficial for promoting healthy gut microbiota that is worthy for the development of antibacterial agents for the food industry.


Assuntos
Microbioma Gastrointestinal , Estilbenos , Antibacterianos/farmacologia , Apoptose , Bacillus cereus , Morte Celular , Microbiologia de Alimentos , Humanos , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA