Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Pathol ; 257(3): 274-284, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35220606

RESUMO

Primary prostate cancer (PCa) can show marked molecular heterogeneity. However, systematic analyses comparing primary PCa and matched metastases in individual patients are lacking. We aimed to address the molecular aspects of metastatic progression while accounting for the heterogeneity of primary PCa. In this pilot study, we collected 12 radical prostatectomy (RP) specimens from men who subsequently developed metastatic castration-resistant prostate cancer (mCRPC). We used histomorphology (Gleason grade, focus size, stage) and immunohistochemistry (IHC) (ERG and p53) to identify independent tumors and/or distinct subclones of primary PCa. We then compared molecular profiles of these primary PCa areas to matched metastatic samples using whole-exome sequencing (WES) and amplicon-based DNA and RNA sequencing. Based on combined pathology and molecular analysis, seven (58%) RP specimens harbored monoclonal and topographically continuous disease, albeit with some degree of intratumor heterogeneity; four (33%) specimens showed true multifocal disease; and one displayed monoclonal disease with discontinuous topography. Early (truncal) events in primary PCa included SPOP p.F133V (one patient), BRAF p.K601E (one patient), and TMPRSS2:ETS rearrangements (eight patients). Activating AR alterations were seen in nine (75%) mCRPC patients, but not in matched primary PCa. Hotspot TP53 mutations, found in metastases from three patients, were readily present in matched primary disease. Alterations in genes encoding epigenetic modifiers were observed in several patients (either shared between primary foci and metastases or in metastatic samples only). WES-based phylogenetic reconstruction and/or clonality scores were consistent with the index focus designated by pathology review in six out of nine (67%) cases. The three instances of discordance pertained to monoclonal, topographically continuous tumors, which would have been considered as unique disease in routine practice. Overall, our results emphasize pathologic and molecular heterogeneity of primary PCa, and suggest that comprehensive IHC-assisted pathology review and genomic analysis are highly concordant in nominating the 'index' primary PCa area. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Genômica , Humanos , Masculino , Proteínas Nucleares/genética , Filogenia , Projetos Piloto , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Repressoras/genética
2.
Cell Syst ; 13(2): 183-193.e7, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34731645

RESUMO

Pan-cancer studies sketched the genomic landscape of the tumor types spectrum. We delineated the purity- and ploidy-adjusted allele-specific profiles of 4,950 patients across 27 tumor types from the Cancer Genome Atlas (TCGA). Leveraging allele-specific data, we reclassified as loss of heterozygosity (LOH) 9% and 7% of apparent copy-number wild-type and gain calls, respectively, and overall observed more than 18 million allelic imbalance somatic events at the gene level. Reclassification of copy-number events revealed associations between driver mutations and LOH, pointing out the timings between the occurrence of point mutations and copy-number events. Integrating allele-specific genomics and matched transcriptomics, we observed that allele-specific gene status is relevant in the regulation of TP53 and its targets. Further, we disclosed the role of copy-neutral LOH in the impairment of tumor suppressor genes and in disease progression. Our results highlight the role of LOH in cancer and contribute to the understanding of tumor progression.


Assuntos
Perda de Heterozigosidade , Neoplasias , Alelos , Genômica , Humanos , Perda de Heterozigosidade/genética , Neoplasias/genética
3.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998599

RESUMO

BACKGROUNDMolecular characterization of prostate cancer (PCa) has revealed distinct subclasses based on underlying genomic alterations occurring early in the natural history of the disease. However, how these early alterations influence subsequent molecular events and the course of the disease over its long natural history remains unclear.METHODSWe explored the molecular and clinical progression of different genomic subtypes of PCa using distinct tumor lineage models based on human genomic and transcriptomic data. We developed transcriptional classifiers, and defined "early" and "late" categories of molecular subclasses from 8,158 PCa patients. Molecular subclasses were correlated with clinical outcomes and pathologic characteristics using Kaplan-Meier and logistic regression analyses.RESULTSWe identified PTEN and CHD1 alterations as subtype-specific late progression events specifically in ERG-overexpressing (ERG+) and SPOP-mutant tumors, respectively, and 2 distinct progression models consisting of ERG/PTEN (normal to ERG+ to PTEN-deleted) and SPOP/CHD1 (normal to SPOP-mutated to CHD1-deleted) with shared early tumorigenesis but distinct pathways toward progression. We found that within ERG+ and SPOP-mutant subtypes, late events were associated with worse prognosis. Importantly, the clinical and pathologic features associated with distinct late events at radical prostatectomy were strikingly different; PTEN deletions were associated with increased locoregional stage, while CHD1 deletions were only associated with increased grade, despite equivalent metastatic potential.CONCLUSIONThese findings suggest a paradigm in which specific subtypes of PCa follow distinct pathways of progression, at both the molecular and clinical levels. Therefore, the interpretation of common clinical parameters such as locoregional tumor stage may be influenced by the underlying tumor lineage, and potentially influence management decisions.FUNDINGProstate Cancer Foundation, National Cancer Institute, Urology Care Foundation, Damon Runyon Cancer Research Foundation, US Department of Defense, and the AIRC Foundation.


Assuntos
Biomarcadores Tumorais , Bases de Dados de Ácidos Nucleicos , Proteínas de Neoplasias , Neoplasias da Próstata , RNA-Seq , Sistema de Registros , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , Estudos Retrospectivos , Taxa de Sobrevida
4.
Nat Commun ; 11(1): 5549, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144576

RESUMO

Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10-20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors.


Assuntos
Linhagem da Célula , Plasticidade Celular , Proteínas Cromossômicas não Histona/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Estudos de Coortes , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Modelos Biológicos , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Subunidades Proteicas/metabolismo , Fatores de Transcrição/genética , Transcriptoma/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-33015524

RESUMO

PURPOSE: The tumor microenvironment is complex, comprising heterogeneous cellular populations. As molecular profiles are frequently generated using bulk tissue sections, they represent an admixture of multiple cell types (including immune, stromal, and cancer cells) interacting with each other. Therefore, these molecular profiles are confounded by signals emanating from many cell types. Accurate assessment of residual cancer cell fraction is crucial for parameterization and interpretation of genomic analyses, as well as for accurately interpreting the clinical properties of the tumor. MATERIALS AND METHODS: To benchmark cancer cell fraction estimation methods, 10 estimators were applied to a clinical cohort of 333 patients with prostate cancer. These methods include gold-standard multiobserver pathology estimates, as well as estimates inferred from genome, epigenome, and transcriptome data. In addition, two methods based on genomic and transcriptomic profiles were used to quantify tumor purity in 4,497 tumors across 12 cancer types. Bulk mRNA and microRNA profiles were subject to in silico deconvolution to estimate cancer cell-specific mRNA and microRNA profiles. RESULTS: We present a systematic comparison of 10 tumor purity estimation methods on a cohort of 333 prostate tumors. We quantify variation among purity estimation methods and demonstrate how this influences interpretation of clinico-genomic analyses. Our data show poor concordance between pathologic and molecular purity estimates, necessitating caution when interpreting molecular results. Limited concordance between DNA- and mRNA-derived purity estimates remained a general pan-cancer phenomenon when tested in an additional 4,497 tumors spanning 12 cancer types. CONCLUSION: The choice of tumor purity estimation method may have a profound impact on the interpretation of genomic assays. Taken together, these data highlight the need for improved assessment of tumor purity and quantitation of its influences on the molecular hallmarks of cancers.

6.
Curr Protoc Bioinformatics ; 67(1): e81, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31524989

RESUMO

High-throughput DNA sequencing technology provides base-level and statistically rich information about the genomic content of a sample. In the contexts of cancer research and precision oncology, thousands of genomes from paired tumor and matched normal samples are profiled and processed to determine somatic copy-number changes and single-nucleotide variations. Higher-order informative analyses, in the form of allele-specific copy-number assessments or subclonality quantification, require reliable estimates of tumor DNA ploidy and tumor cellularity. CLONETv2 provides a complete set of functions to process matched normal and tumor pairs using patient-specific genotype data, is independent of low-level tools (e.g., aligner, segmentation algorithm, mutation caller) and offers high-level functions to compute allele-specific copy number from segmented data and to identify subclonal population in the input sample. CLONETv2 is applicable to whole-genome, whole-exome and targeted sequencing data generated either from tissue or from liquid biopsy samples. © 2019 The Authors.


Assuntos
Biologia Computacional/métodos , Exoma/genética , Neoplasias/genética , Algoritmos , Alelos , Variações do Número de Cópias de DNA , Dosagem de Genes/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ploidias , Medicina de Precisão
7.
Proc Natl Acad Sci U S A ; 116(34): 16987-16996, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387980

RESUMO

Repetitive sequences are hotspots of evolution at multiple levels. However, due to difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content, beyond microsatellites, in proteomes and genomes directly from proteomic and genomic raw data. This method was applied to a wide range of tumors and normal tissues. We identify high similarity between repeat instability patterns in tumors and their patient-matched adjacent normal tissues. Nonetheless, tumor-specific signatures both in protein expression and in the genome strongly correlate with cancer progression and robustly predict the tumorigenic state. In a patient, the hierarchy of genomic repeat instability signatures accurately reconstructs tumor evolution, with primary tumors differentiated from metastases. We observe an inverse relationship between repeat instability and point mutation load within and across patients independent of other somatic aberrations. Thus, repeat instability is a distinct, transient, and compensatory adaptive mechanism in tumor evolution and a potential signal for early detection.


Assuntos
Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Modelos Biológicos , Proteínas de Neoplasias , Neoplasias , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteômica
8.
Proc Natl Acad Sci U S A ; 116(23): 11428-11436, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31061129

RESUMO

Heterogeneity in the genomic landscape of metastatic prostate cancer has become apparent through several comprehensive profiling efforts, but little is known about the impact of this heterogeneity on clinical outcome. Here, we report comprehensive genomic and transcriptomic analysis of 429 patients with metastatic castration-resistant prostate cancer (mCRPC) linked with longitudinal clinical outcomes, integrating findings from whole-exome, transcriptome, and histologic analysis. For 128 patients treated with a first-line next-generation androgen receptor signaling inhibitor (ARSI; abiraterone or enzalutamide), we examined the association of 18 recurrent DNA- and RNA-based genomic alterations, including androgen receptor (AR) variant expression, AR transcriptional output, and neuroendocrine expression signatures, with clinical outcomes. Of these, only RB1 alteration was significantly associated with poor survival, whereas alterations in RB1, AR, and TP53 were associated with shorter time on treatment with an ARSI. This large analysis integrating mCRPC genomics with histology and clinical outcomes identifies RB1 genomic alteration as a potent predictor of poor outcome, and is a community resource for further interrogation of clinical and molecular associations.


Assuntos
Neoplasias de Próstata Resistentes à Castração/genética , Idoso , Androstenos/uso terapêutico , Benzamidas , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Resultado do Tratamento
9.
Bioinformatics ; 35(21): 4433-4435, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31099386

RESUMO

MOTIVATION: Tumor purity (TP) is the proportion of cancer cells in a tumor sample. TP impacts on the accurate assessment of molecular and genomics features as assayed with NGS approaches. State-of-the-art tools mainly rely on somatic copy-number alterations (SCNA) to quantify TP and therefore fail when a tumor genome is nearly euploid, i.e. 'non-aberrant' in terms of identifiable SCNAs. RESULTS: We introduce a computational method, tumor purity estimation from single-nucleotide variants (SNVs), which derives TP from the allelic fraction distribution of SNVs. On more than 7800 whole-exome sequencing data of TCGA tumor samples, it showed high concordance with a range of TP tools (Spearman's correlation between 0.68 and 0.82; >9 SNVs) and rescued TP estimates of 1, 194 samples (15%) pan-cancer. AVAILABILITY AND IMPLEMENTATION: TPES is available as an R package on CRAN and at https://bitbucket.org/l0ka/tpes.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nucleotídeos , Software
10.
Clin Cancer Res ; 25(1): 43-51, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232224

RESUMO

PURPOSE: Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer that may develop de novo or as a mechanism of treatment resistance. N-myc is capable of driving NEPC progression. Alisertib inhibits the interaction between N-myc and its stabilizing factor Aurora-A, inhibiting N-myc signaling, and suppressing tumor growth. PATIENTS AND METHODS: Sixty men were treated with alisertib 50 mg twice daily for 7 days every 21 days. Eligibility included metastatic prostate cancer and at least one: small-cell neuroendocrine morphology; ≥50% neuroendocrine marker expression; new liver metastases without PSA progression; or elevated serum neuroendocrine markers. The primary endpoint was 6-month radiographic progression-free survival (rPFS). Pretreatment biopsies were evaluated by whole exome and RNA-seq and patient-derived organoids were developed. RESULTS: Median PSA was 1.13 ng/mL (0.01-514.2), number of prior therapies was 3, and 68% had visceral metastases. Genomic alterations involved RB1 (55%), TP53 (46%), PTEN (29%), BRCA2 (29%), and AR (27%), and there was a range of androgen receptor signaling and NEPC marker expression. Six-month rPFS was 13.4% and median overall survival was 9.5 months (7.3-13). Exceptional responders were identified, including complete resolution of liver metastases and prolonged stable disease, with tumors suggestive of N-myc and Aurora-A overactivity. Patient organoids exhibited concordant responses to alisertib and allowed for the dynamic testing of Aurora-N-myc complex disruption. CONCLUSIONS: Although the study did not meet its primary endpoint, a subset of patients with advanced prostate cancer and molecular features supporting Aurora-A and N-myc activation achieved significant clinical benefit from single-agent alisertib.


Assuntos
Aurora Quinase A/genética , Azepinas/administração & dosagem , Carcinoma Neuroendócrino/tratamento farmacológico , Proteína Proto-Oncogênica N-Myc/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Pirimidinas/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Aurora Quinase A/antagonistas & inibidores , Azepinas/efeitos adversos , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Progressão da Doença , Humanos , Masculino , Pessoa de Meia-Idade , Orquiectomia , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Pirimidinas/efeitos adversos , Receptores Androgênicos/genética , Transdução de Sinais/efeitos dos fármacos
11.
Nat Commun ; 9(1): 2404, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921838

RESUMO

A major hurdle in the study of rare tumors is a lack of existing preclinical models. Neuroendocrine prostate cancer is an uncommon and aggressive histologic variant of prostate cancer that may arise de novo or as a mechanism of treatment resistance in patients with pre-existing castration-resistant prostate cancer. There are few available models to study neuroendocrine prostate cancer. Here, we report the generation and characterization of tumor organoids derived from needle biopsies of metastatic lesions from four patients. We demonstrate genomic, transcriptomic, and epigenomic concordance between organoids and their corresponding patient tumors. We utilize these organoids to understand the biologic role of the epigenetic modifier EZH2 in driving molecular programs associated with neuroendocrine prostate cancer progression. High-throughput organoid drug screening nominated single agents and drug combinations suggesting repurposing opportunities. This proof of principle study represents a strategy for the study of rare cancer phenotypes.


Assuntos
Tumores Neuroendócrinos/genética , Organoides/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Organoides/patologia , Fenótipo , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Discov ; 7(5): 462-477, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28331002

RESUMO

Precision medicine is an approach that takes into account the influence of individuals' genes, environment, and lifestyle exposures to tailor interventions. Here, we describe the development of a robust precision cancer care platform that integrates whole-exome sequencing with a living biobank that enables high-throughput drug screens on patient-derived tumor organoids. To date, 56 tumor-derived organoid cultures and 19 patient-derived xenograft (PDX) models have been established from the 769 patients enrolled in an Institutional Review Board-approved clinical trial. Because genomics alone was insufficient to identify therapeutic options for the majority of patients with advanced disease, we used high-throughput drug screening to discover effective treatment strategies. Analysis of tumor-derived cells from four cases, two uterine malignancies and two colon cancers, identified effective drugs and drug combinations that were subsequently validated using 3-D cultures and PDX models. This platform thereby promotes the discovery of novel therapeutic approaches that can be assessed in clinical trials and provides personalized therapeutic options for individual patients where standard clinical options have been exhausted.Significance: Integration of genomic data with drug screening from personalized in vitro and in vivo cancer models guides precision cancer care and fuels next-generation research. Cancer Discov; 7(5); 462-77. ©2017 AACR.See related commentary by Picco and Garnett, p. 456This article is highlighted in the In This Issue feature, p. 443.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sequenciamento do Exoma/métodos , Organoides , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética
13.
Science ; 355(6320): 84-88, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059768

RESUMO

Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen receptor (AR)-dependent luminal epithelial cells to AR-independent basal-like cells. This lineage plasticity is enabled by the loss of TP53 and RB1 function, is mediated by increased expression of the reprogramming transcription factor SOX2, and can be reversed by restoring TP53 and RB1 function or by inhibiting SOX2 expression. Thus, mutations in tumor suppressor genes can create a state of increased cellular plasticity that, when challenged with antiandrogen therapy, promotes resistance through lineage switching.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteínas de Ligação a Retinoblastoma/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Benzamidas , Linhagem Celular Tumoral , Linhagem da Célula , Plasticidade Celular , Humanos , Masculino , Nitrilas , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/genética , Fatores de Transcrição SOXB1/genética
14.
JCO Precis Oncol ; 20172017.
Artigo em Inglês | MEDLINE | ID: mdl-29333526

RESUMO

PURPOSE: Patients with cancer who graciously consent for autopsy represent an invaluable resource for the study of cancer biology. To advance the study of tumor evolution, metastases, and resistance to treatment, we developed a next-generation rapid autopsy program integrated within a broader precision medicine clinical trial that interrogates pre- and postmortem tissue samples for patients of all ages and cancer types. MATERIALS AND METHODS: One hundred twenty-three (22%) of 554 patients who consented to the clinical trial also consented for rapid autopsy. This report comprises the first 15 autopsies, including patients with metastatic carcinoma (n = 10), melanoma (n = 1), and glioma (n = 4). Whole-exome sequencing (WES) was performed on frozen autopsy tumor samples from multiple anatomic sites and on non-neoplastic tissue. RNA sequencing (RNA-Seq) was performed on a subset of frozen samples. Tissue was also used for the development of preclinical models, including tumor organoids and patient-derived xenografts. RESULTS: Three hundred forty-six frozen samples were procured in total. WES was performed on 113 samples and RNA-Seq on 72 samples. Successful cell strain, tumor organoid, and/or patient-derived xenograft development was achieved in four samples, including an inoperable pediatric glioma. WES data were used to assess clonal evolution and molecular heterogeneity of tumors in individual patients. Mutational profiles of primary tumors and metastases yielded candidate mediators of metastatic spread and organotropism including CUL9 and PIGM in metastatic ependymoma and ANKRD52 in metastatic melanoma to the lung. RNA-Seq data identified novel gene fusion candidates. CONCLUSION: A next-generation sequencing-based autopsy program in conjunction with a pre-mortem precision medicine pipeline for diverse tumors affords a valuable window into clonal evolution, metastasis, and alterations underlying treatment. Moreover, such an autopsy program yields robust preclinical models of disease.

15.
Nat Genet ; 48(12): 1490-1499, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27749842

RESUMO

Chemotherapy-resistant urothelial carcinoma has no uniformly curative therapy. Understanding how selective pressure from chemotherapy directs the evolution of urothelial carcinoma and shapes its clonal architecture is a central biological question with clinical implications. To address this question, we performed whole-exome sequencing and clonality analysis of 72 urothelial carcinoma samples, including 16 matched sets of primary and advanced tumors prospectively collected before and after chemotherapy. Our analysis provided several insights: (i) chemotherapy-treated urothelial carcinoma is characterized by intra-patient mutational heterogeneity, and the majority of mutations are not shared; (ii) both branching evolution and metastatic spread are very early events in the natural history of urothelial carcinoma; (iii) chemotherapy-treated urothelial carcinoma is enriched with clonal mutations involving L1 cell adhesion molecule (L1CAM) and integrin signaling pathways; and (iv) APOBEC-induced mutagenesis is clonally enriched in chemotherapy-treated urothelial carcinoma and continues to shape the evolution of urothelial carcinoma throughout its lifetime.


Assuntos
Desaminase APOBEC-1/genética , Carcinoma de Células de Transição/genética , Evolução Clonal/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutagênese/genética , Mutação/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Neoplasias da Bexiga Urinária/genética , Antineoplásicos/farmacologia , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/secundário , Células Clonais/metabolismo , Células Clonais/patologia , Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Prospectivos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
16.
Nat Med ; 22(3): 298-305, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26855148

RESUMO

An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in prostate cancer involves epithelial plasticity, in which tumor cells demonstrate low to absent AR expression and often have neuroendocrine features. The etiology and molecular basis for this 'alternative' treatment-resistant cell state remain incompletely understood. Here, by analyzing whole-exome sequencing data of metastatic biopsies from patients, we observed substantial genomic overlap between castration-resistant tumors that were histologically characterized as prostate adenocarcinomas (CRPC-Adeno) and neuroendocrine prostate cancer (CRPC-NE); analysis of biopsy samples from the same individuals over time points to a model most consistent with divergent clonal evolution. Genome-wide DNA methylation analysis revealed marked epigenetic differences between CRPC-NE tumors and CRPC-Adeno, and also designated samples of CRPC-Adeno with clinical features of AR independence as CRPC-NE, suggesting that epigenetic modifiers may play a role in the induction and/or maintenance of this treatment-resistant state. This study supports the emergence of an alternative, 'AR-indifferent' cell state through divergent clonal evolution as a mechanism of treatment resistance in advanced prostate cancer.


Assuntos
Adenocarcinoma/genética , Neoplasias Ósseas/genética , Evolução Clonal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Tumores Neuroendócrinos/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Adenocarcinoma/secundário , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/secundário , Metilação de DNA , Epigênese Genética , Humanos , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/secundário , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Retrospectivos
17.
Elife ; 42015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26374986

RESUMO

Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA-damaging therapeutics.


Assuntos
Instabilidade Genômica , Proteínas Nucleares/deficiência , Neoplasias da Próstata/patologia , Proteínas Repressoras/deficiência , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutagênicos/metabolismo , Complexos Ubiquitina-Proteína Ligase , Peixe-Zebra
18.
JAMA Oncol ; 1(4): 466-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26181256

RESUMO

IMPORTANCE: Understanding molecular mechanisms of response and resistance to anticancer therapies requires prospective patient follow-up and clinical and functional validation of both common and low-frequency mutations. We describe a whole-exome sequencing (WES) precision medicine trial focused on patients with advanced cancer. OBJECTIVE: To understand how WES data affect therapeutic decision making in patients with advanced cancer and to identify novel biomarkers of response. DESIGN, SETTING, AND PATIENTS: Patients with metastatic and treatment-resistant cancer were prospectively enrolled at a single academic center for paired metastatic tumor and normal tissue WES during a 19-month period (February 2013 through September 2014). A comprehensive computational pipeline was used to detect point mutations, indels, and copy number alterations. Mutations were categorized as category 1, 2, or 3 on the basis of actionability; clinical reports were generated and discussed in precision tumor board. Patients were observed for 7 to 25 months for correlation of molecular information with clinical response. MAIN OUTCOMES AND MEASURES: Feasibility, use of WES for decision making, and identification of novel biomarkers. RESULTS: A total of 154 tumor-normal pairs from 97 patients with a range of metastatic cancers were sequenced, with a mean coverage of 95X and 16 somatic alterations detected per patient. In total, 16 mutations were category 1 (targeted therapy available), 98 were category 2 (biologically relevant), and 1474 were category 3 (unknown significance). Overall, WES provided informative results in 91 cases (94%), including alterations for which there is an approved drug, there are therapies in clinical or preclinical development, or they are considered drivers and potentially actionable (category 1-2); however, treatment was guided in only 5 patients (5%) on the basis of these recommendations because of access to clinical trials and/or off-label use of drugs. Among unexpected findings, a patient with prostate cancer with exceptional response to treatment was identified who harbored a somatic hemizygous deletion of the DNA repair gene FANCA and putative partial loss of function of the second allele through germline missense variant. Follow-up experiments established that loss of FANCA function was associated with platinum hypersensitivity both in vitro and in patient-derived xenografts, thus providing biologic rationale and functional evidence for his extreme clinical response. CONCLUSIONS AND RELEVANCE: The majority of advanced, treatment-resistant tumors across tumor types harbor biologically informative alterations. The establishment of a clinical trial for WES of metastatic tumors with prospective follow-up of patients can help identify candidate predictive biomarkers of response.


Assuntos
Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Exoma , Dosagem de Genes , Testes Genéticos/métodos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Centros Médicos Acadêmicos , Animais , Biologia Computacional , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Estudos de Viabilidade , Feminino , Humanos , Mutação INDEL , Masculino , Camundongos , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/patologia , Seleção de Pacientes , Medicina de Precisão , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Med Genomics ; 8: 9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25889339

RESUMO

BACKGROUND: Single base level information from next-generation sequencing (NGS) allows for the quantitative assessment of biological phenomena such as mosaicism or allele-specific features in healthy and diseased cells. Such studies often present with computationally challenging burdens that hinder genome-wide investigations across large datasets that are now becoming available through the 1,000 Genomes Project and The Cancer Genome Atlas (TCGA) initiatives. RESULTS: We present ASEQ, a tool to perform gene-level allele-specific expression (ASE) analysis from paired genomic and transcriptomic NGS data without requiring paternal and maternal genome data. ASEQ offers an easy-to-use set of modes that transparently to the user takes full advantage of a built-in fast computational engine. We report its performances on a set of 20 individuals from the 1,000 Genomes Project and show its detection power on imprinted genes. Next we demonstrate high level of ASE calls concordance when comparing it to AlleleSeq and MBASED tools. Finally, using a prostate cancer dataset we report on a higher fraction of ASE genes with respect to healthy individuals and show allele-specific events nominated by ASEQ in genes that are implicated in the disease. CONCLUSIONS: ASEQ can be used to rapidly and reliably screen large NGS datasets for the identification of allele specific features. It can be integrated in any NGS pipeline and runs on computer systems with multiple CPUs, CPUs with multiple cores or across clusters of machines.


Assuntos
Alelos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias da Próstata/genética , Análise de Sequência de DNA/métodos , Sistemas Computacionais , Bases de Dados Factuais , Perfilação da Expressão Gênica , Genes Neoplásicos , Genoma Humano , Genômica , Genótipo , Heterozigoto , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Linguagens de Programação , Neoplasias da Próstata/metabolismo , Software , Interface Usuário-Computador
20.
Sci Transl Med ; 6(254): 254ra125, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232177

RESUMO

It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers.


Assuntos
Células Clonais , Neoplasias da Próstata/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Deleção Cromossômica , Variações do Número de Cópias de DNA , Glucocorticoides/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Transativadores/genética , Regulador Transcricional ERG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA