Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34979916

RESUMO

BACKGROUND: Because some of its CNS neurons (e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g., hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs, the South African claw-toed frog, Xenopus laevis, offers unique opportunities for exploring differences between regenerative and non-regenerative responses to CNS injury within the same organism. An earlier, three-way RNA-seq study (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) identified genes that regulate chromatin accessibility among those that were differentially expressed in regenerative vs non-regenerative CNS [11]. The current study used whole genome bisulfite sequencing (WGBS) of DNA collected from these same animals at the peak period of axon regeneration to study the extent to which DNA methylation could potentially underlie differences in chromatin accessibility between regenerative and non-regenerative CNS. RESULTS: Consistent with the hypothesis that DNA of regenerative CNS is more accessible than that of non-regenerative CNS, DNA from both the regenerative tadpole hindbrain and frog eye was less methylated than that of the non-regenerative frog hindbrain. Also, consistent with observations of CNS injury in mammals, DNA methylation in non-regenerative frog hindbrain decreased after SCI. However, contrary to expectations that the level of DNA methylation would decrease even further with axotomy in regenerative CNS, DNA methylation in these regions instead increased with injury. Injury-induced differences in CpG methylation in regenerative CNS became especially enriched in gene promoter regions, whereas non-CpG methylation differences were more evenly distributed across promoter regions, intergenic, and intragenic regions. In non-regenerative CNS, tissue-related (i.e., regenerative vs. non-regenerative CNS) and injury-induced decreases in promoter region CpG methylation were significantly correlated with increased RNA expression, but the injury-induced, increased CpG methylation seen in regenerative CNS across promoter regions was not, suggesting it was associated with increased rather than decreased chromatin accessibility. This hypothesis received support from observations that in regenerative CNS, many genes exhibiting increased, injury-induced, promoter-associated CpG-methylation also exhibited increased RNA expression and association with histone markers for active promoters and enhancers. DNA immunoprecipitation for 5hmC in optic nerve regeneration found that the promoter-associated increases seen in CpG methylation were distinct from those exhibiting changes in 5hmC. CONCLUSIONS: Although seemingly paradoxical, the increased injury-associated DNA methylation seen in regenerative CNS has many parallels in stem cells and cancer. Thus, these axotomy-induced changes in DNA methylation in regenerative CNS provide evidence for a novel epigenetic state favoring successful over unsuccessful CNS axon regeneration. The datasets described in this study should help lay the foundations for future studies of the molecular and cellular mechanisms involved. The insights gained should, in turn, help point the way to novel therapeutic approaches for treating CNS injury in mammals.


Assuntos
Axônios , Regeneração Nervosa , Animais , Axônios/metabolismo , Sistema Nervoso Central , Metilação de DNA , Regeneração Nervosa/genética , Células Ganglionares da Retina , Xenopus laevis/genética
3.
Eur J Med Genet ; 62(1): 15-20, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29729439

RESUMO

Copy number variants (CNV)s involving KANK1 are generally classified as variants of unknown significance. Several clinical case reports suggest that the loss of KANK1 on chromosome 9p24.3 has potential impact on neurodevelopment. These case studies are inconsistent in terms of patient phenotype and suspected pattern of inheritance. Further complexities arise because these published reports utilize a variety of genetic testing platforms with varying resolution of the 9p region; this ultimately causes uncertainty about the impacted genomic coordinates and gene transcripts. Beyond these case reports, large case-control studies and publicly available databases statistically cast doubt as to whether variants of KANK1 are clinically significant. However, these large data sources are neither easily extracted nor uniformly applied to clinical interpretation. In this report we provide an updated analysis of the data on this locus and its potential clinical relevance. This is based on a review of the literature as well as 28 patients who harbor a single copy number variant involving KANK1 with or without DOCK8 (27 of whom are not published previously) identified by our clinical laboratory using an ultra-high resolution chromosomal microarray analysis. We note that 13 of 16 patients have a documented diagnosis of autism spectrum disorder (ASD) while only two, with documented perinatal complications, have a documented diagnosis of cerebral palsy (CP). A careful review of the CNVs suggests a transcript-specific effect. After evaluation of our case series and reconsideration of the literature, we propose that KANK1 aberrations do not frequently cause CP but cannot exclude that they represent a risk factor for ASD, especially when the coding region of the shorter, alternate KANK1 transcript (termed "transcript 4" in the UCSC Genome Browser) is impacted.


Assuntos
Transtorno do Espectro Autista/genética , Paralisia Cerebral/genética , Variações do Número de Cópias de DNA , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal , Transtorno do Espectro Autista/patologia , Paralisia Cerebral/patologia , Proteínas do Citoesqueleto , Estudo de Associação Genômica Ampla , Humanos
4.
J Invest Dermatol ; 136(7): 1490-1499, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27039262

RESUMO

Sézary syndrome is a leukemic form of cutaneous T-cell lymphoma with an aggressive clinical course. The genetic etiology of the disease is poorly understood, with chromosomal abnormalities and mutations in some genes being involved in the disease. The goal of our study was to understand the genetic basis of the disease by looking for driver gene mutations and fusion genes in 15 erythrodermic patients with circulating Sézary cells, 14 of them fulfilling the diagnostic criteria of Sézary syndrome. We have discovered genes that could be involved in the pathogenesis of Sézary syndrome. Some of the genes that are affected by somatic point mutations include ITPR1, ITPR2, DSC1, RIPK2, IL6, and RAG2, with some of them mutated in more than one patient. We observed several somatic copy number variations shared between patients, including deletions and duplications of large segments of chromosome 17. Genes with potential function in the T-cell receptor signaling pathway and tumorigenesis were disrupted in Sézary syndrome patients, for example, CBLB, RASA2, BCL7C, RAMP3, TBRG4, and DAD1. Furthermore, we discovered several fusion events of interest involving RASA2, NFKB2, BCR, FASN, ZEB1, TYK2, and SGMS1. Our work has implications for the development of potential therapeutic approaches for this aggressive disease.


Assuntos
Mutação , Síndrome de Sézary/genética , Neoplasias Cutâneas/genética , Idoso , Idoso de 80 Anos ou mais , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Feminino , Deleção de Genes , Duplicação Gênica , Humanos , Linfoma Cutâneo de Células T/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Análise de Sequência de RNA , Transdução de Sinais
5.
Cell Immunol ; 276(1-2): 26-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22663768

RESUMO

Memory and naive CD4 T cells have unique regulatory pathways for self/non-self discrimination. A memory cell specific regulatory pathway was revealed using superantigens to trigger the TCR. Upon stimulation by bacterial superantigens, like staphylococcal enterotoxin B (SEB), TCR proximal signaling is impaired leading to clonal tolerance (anergy). In the present report, we show that memory cell anergy results from the sequestration of the protein tyrosine kinase ZAP-70 away from the TCR/CD3ζ chain. During SEB-induced signaling, ZAP-70 is excluded from both detergent-resistant membrane microdomains and the immunological synapse, thus blocking downstream signaling. We also show that the mechanism underlying memory cell anergy must involve Fyn kinase, given that the suppression of Fyn activity restores the movement of ZAP-70 to the immunological synapse, TCR proximal signaling, and cell proliferation. Thus, toleragens, including microbial toxins, may modulate memory responses by targeting the organizational structure of memory cell signaling complexes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Membrana Celular/imunologia , Memória Imunológica , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Células Cultivadas , Enterotoxinas/imunologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fyn/deficiência , Proteínas Proto-Oncogênicas c-fyn/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Staphylococcus/imunologia
6.
J Cancer ; 2: 478-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980322

RESUMO

Recent studies have pointed to changes in tissue mechanics as a contributory element to the development of malignancies. Increased tissue rigidity is associated with the unfolding of the Type III domains of fibronectin within the extracellular matrix. The consequences of this unfolding on cellular functions within the lung are not well understood. In the present study, we evaluated the effect of a peptide representing a partially unfolded intermediate of the first Type III repeat of fibronectin (FnIII-1c) on inflammatory gene expression in adult human lung fibroblast cells. FnIII-1c induced expression of cytokines, CXCL1-3, IL-8 and TNF-α, by lung fibroblast cells. The increase in IL-8 expression was dependent on Toll-like receptor 2 and NFκB. Immunohistochemistry of tissue arrays representing squamous cell carcinoma of the lung revealed extensive stromal staining for IL-8 and fibronectin fibrils which were co-aligned with myofibroblasts. These data suggest a model in which unfolding of FnIII domains secondary to myofibroblast-generated tension may induce the release of cytokines by stromal fibroblasts present within the lung tumor.

7.
J Cell Physiol ; 225(3): 829-36, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20589836

RESUMO

We investigated the mechanisms whereby omega-3 and -6 polyunsaturated fatty acids (PUFAs) cause cell death of mouse thymocytes using flow cytometry, focusing on the respective roles of intracellular calcium concentration, [Ca(2+)](i) and reactive oxygen species (ROS). We applied the C-22, 20, and 18 carbon omega-3 (DHA, EPA, ALA) and omega-6 (DTA, ARA, and LNA) fatty acids to isolated thymocytes and monitored cell death using the DNA-binding dye, propidium iodide. When applied at 20 µM concentration, omega-3 fatty acids killed thymocytes over a period of 1 h with a potency of DHA > EPA > ALA. The omega-6 PUFAs were more potent. The C18 omega-6 fatty acid, LNA, was the most potent, followed by DHA and ARA. Cell death was always accompanied by an increase in the levels of [Ca(2+)](i) and ROS. Both increases were in proportion to the potency of the PUFAs in inducing cell death. Removing extracellular calcium did not prevent the elevation in [Ca(2+)](i) nor cell death. However, the intracellular calcium chelator, BAPTA, almost totally reduced both the elevation in [Ca(2+)](i) and cell death, while vitamin E reduced the elevation in ROS and cell death. BAPTA also prevented the elevation in ROS, but vitamin E did not prevent the elevation in [Ca(2+)](i). Thapsigargin, which depletes endoplasmic reticulum calcium, blocked the elevation in [Ca(2+)](i), but CCCP, a mitochondrial calcium uptake inhibitor, did not. These results suggest that the six PUFAs we studied kill thymocytes by causing release of calcium from endoplasmic reticulum, which causes release of ROS from mitochondria which leads to cell death.


Assuntos
Cálcio/metabolismo , Ácidos Graxos Ômega-3/toxicidade , Ácidos Graxos Ômega-6/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Timo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/metabolismo , Morte Celular , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Hidrazonas/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tapsigargina/farmacologia , Timo/metabolismo , Timo/patologia , Fatores de Tempo , Desacopladores/farmacologia , Vitamina E/farmacologia
8.
BMC Genomics ; 8: 310, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17784962

RESUMO

BACKGROUND: High resolution radiation hybrid (RH) maps can facilitate genome sequence assembly by correctly ordering genes and genetic markers along chromosomes. The objective of the present study was to generate high resolution RH maps of bovine chromosomes 19 (BTA19) and 29 (BTA29), and compare them with the current 7.1X bovine genome sequence assembly (bovine build 3.1). We have chosen BTA19 and 29 as candidate chromosomes for mapping, since many Quantitative Trait Loci (QTL) for the traits of carcass merit and residual feed intake have been identified on these chromosomes. RESULTS: We have constructed high resolution maps of BTA19 and BTA29 consisting of 555 and 253 Single Nucleotide Polymorphism (SNP) markers respectively using a 12,000 rad whole genome RH panel. With these markers, the RH map of BTA19 and BTA29 extended to 4591.4 cR and 2884.1 cR in length respectively. When aligned with the current bovine build 3.1, the order of markers on the RH map for BTA19 and 29 showed inconsistencies with respect to the genome assembly. Maps of both the chromosomes show that there is a significant internal rearrangement of the markers involving displacement, inversion and flips within the scaffolds with some scaffolds being misplaced in the genome assembly. We also constructed cattle-human comparative maps of these chromosomes which showed an overall agreement with the comparative maps published previously. However, minor discrepancies in the orientation of few homologous synteny blocks were observed. CONCLUSION: The high resolution maps of BTA19 (average 1 locus/139 kb) and BTA29 (average 1 locus/208 kb) presented in this study suggest that by the incorporation of RH mapping information, the current bovine genome sequence assembly can be significantly improved. Furthermore, these maps can serve as a potential resource for fine mapping QTL and identification of causative mutations underlying QTL for economically important traits.


Assuntos
Mapeamento Cromossômico/veterinária , Genoma , Células Híbridas/efeitos da radiação , Animais , Bovinos , Marcadores Genéticos
9.
BMC Genomics ; 7: 283, 2006 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17087818

RESUMO

BACKGROUND: Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6x coverage (Btau_2.0) is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH) map described here has been contributed to the international sequencing project to aid this process. RESULTS: An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map) and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP) and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6x bovine assembly (Btau_2.0) and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. CONCLUSION: Alignment of the BovGen RH map with other published RH and genetic maps showed higher consistency in marker order and chromosome assignment than with the current 6x sequence assembly. This suggests that the bovine sequence assembly could be significantly improved by incorporating additional independent mapping information.


Assuntos
Genoma , Mapeamento de Híbridos Radioativos/métodos , Animais , Bovinos , Cromossomos/genética , Cromossomos Artificiais Bacterianos/genética , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA