Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885713

RESUMO

Plasma polymer coatings fabricated from Melaleuca alternifolia essential oil and its derivatives have been previously shown to reduce the extent of microbial adhesion on titanium, polymers, and other implantable materials used in dentistry. Previous studies have shown these coatings to maintain their performance under standard operating conditions; however, when used in e.g., a dental implant, these coatings may inadvertently become subject to in situ cleaning treatments, such as those using an atmospheric pressure plasma jet, a promising tool for the effective in situ removal of biofilms from tissues and implant surfaces. Here, we investigated the effect of such an exposure on the antimicrobial performance of the Melaleuca alternifolia polymer coating. It was found that direct exposure of the polymer coating surface to the jet for periods less than 60 s was sufficient to induce changes in its surface chemistry and topography, affecting its ability to retard subsequent microbial attachment. The exact effect of the jet exposure depended on the chemistry of the polymer coating, the length of plasma treatment, cell type, and incubation conditions. The change in the antimicrobial activity for polymer coatings fabricated at powers of 20-30 W was not statistically significant due to their limited baseline bioactivity. Interestingly, the bioactivity of polymer coatings fabricated at 10 and 15 W against Staphylococcus aureus cells was temporarily improved after the treatment, which could be attributed to the generation of loosely attached bioactive fragments on the treated surface, resulting in an increase in the dose of the bioactive agents being eluted by the surface. Attachment and proliferation of Pseudomonas aeruginosa cells and mixed cultures were less affected by changes in the bioactivity profile of the surface. The sensitivity of the cells to the change imparted by the jet treatment was also found to be dependent on their origin culture, with mature biofilm-derived P. aeruginosa bacterial cells showing a greater ability to colonize the surface when compared to its planktonic broth-grown counterpart. The presence of plasma-generated reactive oxygen and nitrogen species in the culture media was also found to enhance the bioactivity of polymer coatings fabricated at power levels of 10 and 15 W, due to a synergistic effect arising from simultaneous exposure of cells to reactive oxygen and nitrogen species (RONS) and eluted bioactive fragments. These results suggest that it is important to consider the possible implications of inadvertent changes in the properties and performance of plasma polymer coatings as a result of exposure to in situ decontamination, to both prevent suboptimal performance and to exploit possible synergies that may arise for some polymer coating-surface treatment combinations.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Melaleuca/química , Óleos Voláteis/química , Antibacterianos/farmacologia , Pressão Atmosférica , Materiais Revestidos Biocompatíveis/farmacologia , Implantes Dentários/microbiologia , Humanos , Óleos Voláteis/farmacologia , Gases em Plasma , Polímeros/química , Próteses e Implantes , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Titânio/química
2.
ACS Appl Bio Mater ; 3(10): 7202-7210, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019378

RESUMO

Efficient and selective internalization of nanoscale diamonds (also termed nanodiamonds, NDs) by living cells is of fundamental importance for their bionanotechnological applications. The biocompatibility of NDs is well established and has been suggested to arise from the limited membrane perturbation during their cellular translocation. However, the latter may be affected when cells are subjected to external stress. This study shows that the oxidative stress generated by atmospheric pressure cold plasmas (APCP) alters cell sensitivity to NDs, and their cytotoxicity profile. Both positively and negatively charged NDs are nontoxic to cells, here Saccharomyces cerevisiae and human cell lines, i.e., near-normal human mammary epithelial cells (MCF-10A) and breast cancer cells (MDA-MB-468 and T47D), unless the APCP stress is introduced. A brief exposure of the cells to APCP leads to a significant increase in their ND affinity (uptake and/or surface attachment) and intracellular ROS accumulation, particularly for positively charged NDs and both yeast and cancer cells. A concomitant decrease in cell viability and yeast cell growth, reflected by longer lag phases and lower cell density after 24 h of incubation, demonstrates a considerably enhanced ND toxicity to these cells. These results suggest that chemo-radiative stress, such as that produced by plasma, may influence the toxicity of nanoparticles to different cells, with specificity achieved through controlling particle charges. Moreover, since oxidative stress is not only associated with the use of APCP but can arise unintentionally within an organism and/or in the environment, these findings may have broader implications for the use of nontoxic nanoparticles in bionanotechnology in general.

3.
Sci Rep ; 9(1): 5973, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979934

RESUMO

Nanocomposites offer attractive and cost-effective thin layers with superior properties for antimicrobial, drug delivery and microelectronic applications. This work reports single-step plasma-enabled synthesis of polymer/zinc nanocomposite thin films via co-deposition of renewable geranium essential oil-derived polymer and zinc nanoparticles produced by thermal decomposition of zinc acetylacetonate. The chemical composition, surfaces characteristics and antimicrobial performance of the designed nanocomposite were systematically investigated. XPS survey proved the presence of ZnO in the matrix of formed polymers at 10 W and 50 W. SEM images verified that the average size of a ZnO nanoparticle slightly increased with an increase in the power of deposition, from approximately 60 nm at 10 W to approximately 80 nm at 50 W. Confocal scanning laser microscopy images showed that viability of S. aureus and E.coli cells significantly reduced on surfaces of ZnO/polymer composites compared to pristine polymers. SEM observations further demonstrated that bacterial cells incubated on Zn/Ge 10 W and Zn/Ge 50 W had deteriorated cell walls, compared to pristine polymers and glass control. The release of ZnO nanoparticles from the composite thin films was confirmed using ICP measurements, and can be further controlled by coating the film with a thin polymeric layer. These eco-friendly nanocomposite films could be employed as encapsulation coatings to protect relevant surfaces of medical devices from microbial adhesion and colonization.

4.
Acta Biomater ; 86: 41-65, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576863

RESUMO

The most common malignancy in women, breast cancer remains a major medical challenge that affects the life of thousands of patients every year. With recognized benefits to body image and self-esteem, the use of synthetic mammary implants for elective cosmetic augmentation and post-mastectomy reconstruction continues to increase. Higher breast implant use leads to an increased occurrence of implant-related complications associated with implant leakage and rupture, capsular contracture, necrosis and infections, which include delayed healing, pain, poor aesthetic outcomes and the need for revision surgeries. Along with the health status of the implant recipient and the skill of the surgeon, the properties of the implant determine the likelihood of implant-related complications and, in doing so, specific patient outcomes. This paper will review the challenges associated with the use of silicone, saline and "gummy bear" implants in view of their application in patients recovering from breast cancer-related mastectomy, and investigate the opportunities presented by advanced functional nanomaterials in meeting these challenges and potentially opening new dimensions for breast reconstruction. STATEMENT OF SIGNIFICANCE: Breast cancer is a significant cause of morbidity and mortality in women worldwide, which is difficult to prevent or predict, and its treatment carries long-term physiological and psychological consequences. Post-mastectomy breast reconstruction addresses the cosmetic aspect of cancer treatment. Yet, drawbacks of current implants contribute to the development of implant-associated complications, which may lead to prolonged patient care, pain and loss of function. Nanomaterials can help resolve the intrinsic biomechanical mismatch between implant and tissues, enhance mechanical properties of soft implantable materials, and provide an alternative avenue for controlled drug delivery. Here, we explore advances in the use of functionalized nanomaterials to enhance the properties of breast implants, with representative examples that highlight the utility of nanomaterials in addressing key challenges associated with breast reconstruction.


Assuntos
Neoplasias da Mama/cirurgia , Mamoplastia , Nanocompostos/uso terapêutico , Cirurgia Plástica , Implantes de Mama/efeitos adversos , Feminino , Humanos , Nanocompostos/ultraestrutura , Infecções Relacionadas à Prótese/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA