Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Int J Pharm ; 655: 124015, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527565

RESUMO

Sonodynamic therapy (SDT) utilizes ultrasonic excitation of a sensitizer to generate reactive oxygen species (ROS) to destroy tumor. Two dimensional (2D) black phosphorus (BP) is an emerging sonosensitizer that can promote ROS production to be used in SDT but it alone lacks active targeting effect and showed low therapy efficiency. In this study, a stable dispersion of integrated micro-nanoplatform consisting of BP nanosheets loaded and Fe3O4 nanoparticles (NPs) connected microbubbles was introduced for ultrasound imaging guided and magnetic field directed precision SDT of breast cancer. The targeted ultrasound imaging at 18 MHz and efficient SDT effects at 1 MHz were demonstrated both in-vitro and in-vivo on the breast cancer. The magnetic microbubbles targeted deliver BP nanosheets to the tumor site under magnetic navigation and increased the uptake of BP nanosheets by inducing cavitation effect for increased cell membrane permeability via ultrasound targeted microbubble destruction (UTMD). The mechanism of SDT by magnetic black phosphorus microbubbles was proposed to be originated from the ROS triggered mitochondria mediated apoptosis by up-regulating the pro-apoptotic proteins while down-regulating the anti-apoptotic proteins. In conclusion, the ultrasound theranostic was realized via the magnetic black phosphorus microbubbles, which could realize targeting and catalytic sonodynamic therapy.


Assuntos
Neoplasias da Mama , Terapia por Ultrassom , Humanos , Feminino , Microbolhas , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Ultrassonografia , Terapia por Ultrassom/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Fósforo , Fenômenos Magnéticos
2.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570485

RESUMO

Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment.

3.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500245

RESUMO

Delivery of chemotherapeutics to cancer cells using polymeric micelles is a promising strategy for cancer treatment. However, limited stability of micelles, premature drug release and off-target effect are the major obstacles that restrict the utilization of polymeric micelles as effective drug delivery systems. In this work, we addressed these issues through the innovative design of targeted pH-sensitive crosslinked polymeric micelles for chemotherapeutic delivery. A well-defined triblock copolymer, poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate)-b-poly(butyl acrylate) (PEG-b-PHEMA-b-PBA), was synthesized by living radical polymerization, and then modified by using 4-pentenoic anhydride to incorporate pendant crosslinkable alkene groups in the middle block. The resulting copolymer underwent self-assembly in aqueous solution to form non-crosslinked micelles (NCMs). Subsequently, intramicellar thiol-ene crosslinking was performed by using 1,4-butanediol bis(3-mercaptopropionate) to give crosslinked micelles (CMs) with pH-sensitive crosslinks. The targeted CM (cRGD-DOX10-CM5) was readily prepared by using tumor-targeting ligand cyclo(Arg-Gly-Asp-D-Phe-Cys) (cRGD) together with the 1,4-butanediol bis(3-mercaptopropionate) during the crosslinking step. The study of cumulative DOX release revealed the pH-sensitive feature of drug release from these CMs. An in vitro MTT assay revealed that NCMs and CMs are biocompatible with MCF 10A cells, and the samples exhibited significant therapeutic efficiency as compared to free DOX. Cellular uptake studies confirmed higher uptake of cRGD-DOX10-CM5 by MCF 10A cancer cells via cRGD-receptor-mediated endocytosis as compared to the corresponding analogues without cRGD. These results indicate that such pH-responsive crosslinked PEG-b-PHEMA-b-PBA-based micelles are therapeutically effective against cancer cells and hold remarkable promise to act as smart drug delivery systems for cancer therapy.


Assuntos
Micelas , Neoplasias , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Polímeros , Polietilenoglicóis , Concentração de Íons de Hidrogênio
4.
Light Sci Appl ; 11(1): 324, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369148

RESUMO

Among 2D materials (Xenes) which are at the forefront of research activities, borophene, is an exciting new entry due to its uniquely varied optical, electronic, and chemical properties in many polymorphic forms with widely varying band gaps including the lightest 2D metallic phase. In this paper, we used a simple selective chemical etching to prepare borophene with a strong near IR light-induced photothermal effect. The photothermal efficiency is similar to plasmonic Au nanoparticles, with the added benefit of borophene being degradable due to electron deficiency of boron. We introduce this selective chemical etching process to obtain ultrathin and large borophene nanosheets (thickness of ~4 nm and lateral size up to ~600 nm) from the precursor of AlB2. We also report first-time observation of a selective Acid etching behavior showing HCl etching of Al to form a residual B lattice, while HF selectively etches B to yield an Al lattice. We demonstrate that through surface modification with polydopamine (PDA), a biocompatible smart delivery nanoplatform of B@PDA can respond to a tumor environment, exhibiting an enhanced cellular uptake efficiency. We demonstrate that borophene can be more suitable for safe photothermal theranostic of thick tumor using deep penetrating near IR light compared to gold nanoparticles which are not degradable, thus posing long-term toxicity concerns. With about 40 kinds of borides, we hope that our work will open door to more discoveries of this top-down selective etching approach for generating borophene structures with rich unexplored thermal, electronic, and optical properties for many other technological applications.

5.
Sci Rep ; 12(1): 9129, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650237

RESUMO

Boron-based nano-formulations look very promising for biomedical applications, including photo- and boron neutron capture therapies, but the fabrication of non-toxic water-dispersible boron nanoparticles (NPs), which contain the highest boron atom concentration, is difficult using currently available chemical and plasma synthesis methods. Here, we demonstrate purely aqueous synthesis of clean boron NPs by methods of femtosecond laser ablation from a solid boron target in water, thus free of any toxic organic solvents, and characterize their properties. We show that despite highly oxidizing water ambience, the laser-ablative synthesis process follows an unusual scenario leading to the formation of boron NPs together with boric acid (H3BO3) as an oxidation by-product coating the nanoparticles, which acts to stabilize the elemental boron NPs dispersion. We then demonstrate the purification of boron NPs from residual boric acid in deionized water, followed by their coating with polyethylene glycol to improve colloidal stability and biocompatibility. It was found that the formed NPs have a spherical shape with averaged size of about 37 nm, and are composed of elemental boron in mostly amorphous phase with the presence of certain crystalline fraction. The synthesized NPs demonstrate low toxicity and exhibit strong absorption in the NIR window of relative tissue transparency, promising their use in photoacoustic imaging and phototherapy, in addition to their promise for neutron capture therapy. This combined potential ability of generating imaging and therapy functionalities makes laser-synthesized B NPs a very promising multifunctional agent for biomedical applications.


Assuntos
Boro , Nanopartículas , Linhagem Celular Tumoral , Lasers , Nanopartículas/química , Água/química
6.
ACS Nano ; 16(4): 5036-5061, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35294165

RESUMO

Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.


Assuntos
Nanopartículas , Neoplasias , Medicina Nuclear , Humanos , Nanomedicina/métodos , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica
7.
Nanomedicine ; 41: 102513, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954380

RESUMO

Current glioblastoma multiforme (GBM) treatment is insufficient, facing obstacles like poor tumor accumulation and dose limiting side effects of chemotherapeutic agents. Targeted nanomaterials offer breakthrough potential in GBM treatment; however, traditional antibody-based targeting poses challenges for live brain application. To overcome current obstacles, we introduce here the development of a small molecule targeting agent, CFMQ, coupled to biocompatible chitosan coated poly(lactic-co-glycolic) acid nanoparticles. These targeted nanoparticles enhance cellular uptake and show rapid blood-brain barrier (BBB) permeability in-vitro, demonstrating the ability to effectively deliver their load to tumor cells. Encapsulation of the chemotherapeutic agent, temozolomide (TMZ), decreases the IC50 ~34-fold compared to free-drug. Also, CFMQ synergistically suppresses tumor cell progression, reducing colony formation (98%), cell migration (84%), and cell invasion (77%). Co-encapsulation of Cy5 enables optical image guided therapy. This biocompatible theranostic nanoformulation shows early promise in significantly enhancing the efficacy of TMZ, while providing potential for image-guided therapy for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Carbocianinas , Linhagem Celular Tumoral , Receptores ErbB , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
8.
ACS Nano ; 15(11): 18394-18402, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34605648

RESUMO

Hybrid nanostructures are promising for ultrasound-triggered drug delivery and treatment, called sonotheranostics. Structures based on plasmonic nanoparticles for photothermal-induced microbubble inflation for ultrasound imaging exist. However, they have limited therapeutic applications because of short microbubble lifetimes and limited contrast. Photochemistry-based sonotheranostics is an attractive alternative, but building near-infrared (NIR)-responsive echogenic nanostructures for deep tissue applications is challenging because photolysis requires high-energy (UV-visible) photons. Here, we report a photochemistry-based echogenic nanoparticle for in situ NIR-controlled ultrasound imaging and ultrasound-mediated drug delivery. Our nanoparticle has an upconversion nanoparticle core and an organic shell carrying gas generator molecules and drugs. The core converts low-energy NIR photons into ultraviolet emission for photolysis of the gas generator. Carbon dioxide gases generated in the tumor-penetrated nanoparticle inflate into microbubbles for sonotheranostics. Using different NIR laser power allows dual-modal upconversion luminescence planar imaging and cross-sectional ultrasonography. Low-frequency (10 MHz) ultrasound stimulated microbubble collapse, releasing drugs deep inside the tumor through cavitation-induced transport. We believe that the photoechogenic inflatable hierarchical nanostructure approach introduced here can have broad applications for image-guided multimodal theranostics.


Assuntos
Nanopartículas , Neoplasias , Humanos , Estudos Transversais , Microbolhas , Nanopartículas/química , Sistemas de Liberação de Medicamentos
9.
Adv Mater ; 33(49): e2102562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643001

RESUMO

Optoelectronic science and 2D nanomaterial technologies are currently at the forefront of multidisciplinary research and have numerous applications in electronics and photonics. The unique energy and optically induced interfacial electron transfer in these nanomaterials, enabled by their relative band alignment characteristics, can provide important therapeutic modalities for healthcare. Given that nano-heterostructures can facilitate photoinduced electron-hole separation and enhance generation of reactive oxygen species (ROS), 2D nano-heterostructure-based photosensitizers can provide a major advancement in photodynamic therapy (PDT), to overcome the current limitations in hypoxic tumor microenvironments. Herein, a bismuthene/bismuth oxide (Bi/BiOx)-based lateral nano-heterostructure synthesized using a regioselective oxidation process is introduced, which, upon irradiation at 660 nm, effectively generates 1 O2 under normoxia but produces cytotoxic •OH and H2 under hypoxia, which synergistically enhances PDT. Furthermore, this Bi/BiOx nano-heterostructure is biocompatible and biodegradable, and, with the surface molecular engineering used here, it improves tumor tissue penetration and increases cellular uptake during in vitro and in vivo experiments, yielding excellent oxygen-independent tumor ablation with 660 nm irradiation, when compared with traditional PDT agents.


Assuntos
Neoplasias , Fotoquimioterapia , Bismuto , Humanos , Hipóxia , Neoplasias/tratamento farmacológico , Oxigênio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
10.
Light Sci Appl ; 10(1): 182, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518511

RESUMO

Bright anti-Stokes fluorescence (ASF) in the first near-infrared spectral region (NIR-I, 800 nm-900 nm) under the excitation of a 915 nm continuous wave (CW) laser, is observed in Indocyanine Green (ICG), a dye approved by the Food and Drug Administration for clinical use. The dependence of fluorescence intensity on excitation light power and temperature, together with fluorescence lifetime measurement, establish this ASF to be originated from absorption from a thermally excited vibrational level (hot-band absorption), as shown in our experiments, which is stronger than the upconversion fluorescence from widely-used rare-earth ion doped nanoparticles. To test the utility of this ASF NIR-I probe for advanced bioimaging, we successively apply it for biothermal sensing, cerebral blood vessel tomography and blood stream velocimetry. Moreover, in combination with L1057 nanoparticles, which absorb the ASF of ICG and emit beyond 1100 nm, these two probes generate multi-mode images in two fluorescent channels under the excitation of a single 915 nm CW laser. One channel is used to monitor two overlapping organs, urinary system & blood vessel of a live mouse, while the other shows urinary system only. Using in intraoperative real-time monitoring, such multi-mode imaging method can be beneficial for visual guiding in anatomy of the urinary system to avoid any accidental injury to the surrounding blood vessels during surgery.

11.
Anal Chem ; 93(23): 8281-8290, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048235

RESUMO

Research in fundamental cell biology and pathology could be revolutionized by developing the capacity for quantitative molecular analysis of subcellular structures. To that end, we introduce the Ramanomics platform, based on confocal Raman microspectrometry coupled to a biomolecular component analysis algorithm, which together enable us to molecularly profile single organelles in a live-cell environment. This emerging omics approach categorizes the entire molecular makeup of a sample into about a dozen of general classes and subclasses of biomolecules and quantifies their amounts in submicrometer volumes. A major contribution of our study is an attempt to bridge Raman spectrometry with big-data analysis in order to identify complex patterns of biomolecules in a single cellular organelle and leverage discovery of disease biomarkers. Our data reveal significant variations in organellar composition between different cell lines. We also demonstrate the merits of Ramanomics for identifying diseased cells by using prostate cancer as an example. We report large-scale molecular transformations in the mitochondria, Golgi apparatus, and endoplasmic reticulum that accompany the development of prostate cancer. Based on these findings, we propose that Ramanomics datasets in distinct organelles constitute signatures of cellular metabolism in healthy and diseased states.


Assuntos
Complexo de Golgi , Organelas , Biomarcadores/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias , Organelas/metabolismo , Análise Espectral Raman
12.
Cancer Nanotechnol ; 12(1): 4, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603920

RESUMO

BACKGROUND: In this study, we report on the synthesis, imaging, and radiosensitizing properties of ultrasmall ß-NaGdF4:Yb50% nanoparticles as a multifunctional theranostic platform. The synthesized nanoparticles act as potent bimodal contrast agents with superior imaging properties compared to existing agents used for magnetic resonance imaging (MRI) and computed tomography (CT). Clonogenic assays demonstrated that these nanoparticles can act as effective radiosensitizers, provided that the nanoparticles are taken up intracellularly. RESULTS: Our ultrasmall ß-NaGdF4:Yb50% nanoparticles demonstrate improvement in T1-weighted contrast over the standard clinical MR imaging agent Gd-DTPA and similar CT signal enhancement capabilities as commercial agent iohexol. A 2 Gy dose of X-ray induced ~ 20% decrease in colony survival when C6 rat glial cells were incubated with non-targeted nanoparticles (NaGdF4:Yb50%), whereas the same X-ray dose resulted in a ~ 60% decrease in colony survival with targeted nanoparticles conjugated to folic acid (NaGdF4:Yb50%-FA). Intravenous administration of nanoparticles resulted in clearance through urine and feces within a short duration, based on the ex vivo analysis of Gd3+ ions via ICP-MS. CONCLUSION: These biocompatible and in vivo clearable ultrasmall NaGdF4:Yb50% are promising candidates for further evaluation in image-guided radiotherapy applications.

13.
Nat Commun ; 12(1): 614, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504762

RESUMO

Infiltrating gliomas are devastating and incurable tumors. Amongst all gliomas, those harboring a mutation in isocitrate dehydrogenase 1 mutation (IDH1mut) acquire a different tumor biology and clinical manifestation from those that are IDH1WT. Understanding the unique metabolic profile reprogrammed by IDH1 mutation has the potential to identify new molecular targets for glioma therapy. Herein, we uncover increased monounsaturated fatty acids (MUFA) and their phospholipids in endoplasmic reticulum (ER), generated by IDH1 mutation, that are responsible for Golgi and ER dilation. We demonstrate a direct link between the IDH1 mutation and this organelle morphology via D-2HG-induced stearyl-CoA desaturase (SCD) overexpression, the rate-limiting enzyme in MUFA biosynthesis. Inhibition of IDH1 mutation or SCD silencing restores ER and Golgi morphology, while D-2HG and oleic acid induces morphological defects in these organelles. Moreover, addition of oleic acid, which tilts the balance towards elevated levels of MUFA, produces IDH1mut-specific cellular apoptosis. Collectively, these results suggest that IDH1mut-induced SCD overexpression can rearrange the distribution of lipids in the organelles of glioma cells, providing new insight into the link between lipid metabolism and organelle morphology in these cells, with potential and unique therapeutic implications.


Assuntos
Isocitrato Desidrogenase/genética , Mutação/genética , Organelas/metabolismo , Fosfolipídeos/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Glioblastoma/patologia , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Modelos Biológicos , Oligodendroglioma/patologia , Estearoil-CoA Dessaturase/metabolismo
14.
Macromol Biosci ; 21(1): e2000358, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283480

RESUMO

A nanoformulation composed of curdlan, a linear polysaccharide of 1,3-ß-linked d-glucose units, hydrogen bonded to poly(γ -glutamic acid) (PGA), was developed to stimulate macrophage. Curdlan/PGA nanoparticles (C-NP) are formulated by physically blending curdlan (0.2 mg mL-1 in 0.4 m NaOH) with PGA (0.8 mg mL-1 ). Forster resonance energy transfer (FRET) analysis demonstrates a heterospecies interpolymer complex formed between curdlan and PGA. The 1 H-NMR spectra display significant peak broadening as well as downfield chemical shifts of the hydroxyl proton resonances of curdlan, indicating potential intermolecular hydrogen bonding interactions. In addition, the cross peaks in 1 H-1 H 2D-NOESY suggest intermolecular associations between the OH-2/OH-4 hydroxyl groups of curdlan and the carboxylic-/amide-groups of PGA via hydrogen bonding. Intracellular uptake of C-NP occurs over time in human monocyte-derived macrophage (MDM). Furthermore, C-NP nanoparticles dose-dependently increase gene expression for TNF-α, IL-6, and IL-8 at 24 h in MDM. C-NP nanoparticles also stimulate the release of IL-lß, MCP-1, TNF-α, IL-8, IL-12p70, IL-17, IL-18, and IL-23 from MDM. Overall, this is the first demonstration of a simplistic nanoformulation formed by hydrogen bonding between curdlan and PGA that modulates cytokine gene expression and release of cytokines from MDM.


Assuntos
Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/química , beta-Glucanas/farmacologia , Quimiocinas/classificação , Quimiocinas/genética , Citocinas/classificação , Citocinas/genética , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogênio/química , Macrófagos/imunologia , Macrófagos/metabolismo , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , beta-Glucanas/química
15.
Acc Chem Res ; 54(3): 697-706, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33301301

RESUMO

Manipulating the dynamics of dark excited states (DESs), such as higher excited singlet or excited triplet states with no or small radiative decay, are of both fundamental and practical interests, an important application being photoactivated diagnosis and therapy (phototheranostics), which include photoacoustic (PA) imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). However, the current understanding of DESs in organic structures is rather limited, thus making any rational manipulation of DES in organic materials very challenging.A DES decays primarily by radiationless transition through two pathways: (i) singlet-to-triplet intersystem crossing (ISC) and (ii) internal conversion (IC) relaxation. The deactivation of a DES via ISC can generate cytotoxic reactive oxygen species (ROS) for PDT, while IC could convert photons into heat for PA imaging and PTT. In this Account, we highlight our research on developing a fundamental understanding of structure-property relationships for manipulation of DESs in organic materials in relation to phototheranostic applications. We describe the application of femtosecond transient absorption (fs-TA) spectroscopy for obtaining valuable insights into the DES dynamics. Afterward, we present our work on DESs in nonrigid molecules that revealed greatly enhanced ISC through geometry twisting, which leads to an innovative pathway to develop organic materials exhibiting external stimuli-responsive reversible switching of ISC. We introduce the concept of smart PDT where highly efficient ISC imparted by geometry twisting in the acidic environment specific to tumors leads to very efficient and highly localized PDT, thus leaving surrounding healthy tissues at a different pH unaffected. This insightful understanding of ISC can lead to the development of more advanced photosensitizers for PDT. Two other emergent concepts from our work presented here are (1) significantly enhanced IC producing strong local heating by combining two-photon absorption with excited state absorption for cumulative multiphoton absorption, thus greatly increasing the strength of the PA signal for nonlinear PA imaging, and (2) shown by an example of an organic molecule, BODIPY, nanoscale charge-transfer state mediated strong IC in aggregate nanoparticles resulting in exceptionally high photothermal conversion efficiency of 61% for both PA and PTT. Some in vivo results of the phototheranostic studies using BODIPY are presented, providing an elegant example of nanoscale manipulation of the excited state dynamics.This Account concludes with a summary and discussion of future perspectives. We hope this Account will deepen the understanding of molecular and nanoscale control of excited state dynamics in organic materials, hopefully enticing a broad range of scientists within different disciplinary areas.


Assuntos
Compostos Orgânicos/química , Técnicas Fotoacústicas/métodos , Animais , Compostos de Boro/química , Raios Infravermelhos , Camundongos , Nanopartículas/química , Neoplasias/terapia , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Teoria Quântica , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
16.
Cancers (Basel) ; 12(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172178

RESUMO

There is widespread interest in developing agents to modify tumor hypoxia in head and neck squamous cell carcinomas (HNSCC). Here, we report on the synthesis, characterization, and potential utility of ultra-small NaYF4:Nd3+/NaGdF4 nanocrystals coated with manganese dioxide (usNP-MnO2) for spatiotemporal modulation of hypoxia in HNSCC. Using a dual modality imaging approach, we first visualized the release of Mn2+ using T1-weighted magnetic resonance imaging (MRI) and modulation of oxygen saturation (%sO2) using photoacoustic imaging (PAI) in vascular channel phantoms. Combined MRI and PAI performed in patient-derived HNSCC xenografts following local and systemic delivery of the hybrid nanoparticles enabled mapping of intratumoral nanoparticle accumulation (based on T1 contrast enhancement) and improvement in tumor oxygenation (increased %sO2) within the tumor microenvironment. Our results demonstrate the potential of hybrid nanoparticles for the modulation of tumor hypoxia in head and neck cancer. Our findings also highlight the potential of combined MRI-PAI for simultaneous mapping nanoparticle delivery and oxygenation changes in tumors. Such imaging methods could be valuable in the precise selection of patients that are likely to benefit from hypoxia-modifying nanotherapies.

17.
Light Sci Appl ; 9: 161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014356

RESUMO

Here, we describe a combination strategy of black phosphorus (BP)-based photothermal therapy together with anti-CD47 antibody (aCD47)-based immunotherapy to synergistically enhance cancer treatment. Tumour resistance to immune checkpoint blockades in most cancers due to immune escape from host surveillance, along with the initiation of metastasis through immunosuppressive cells in the tumour microenvironment, remains a significant challenge for cancer immunotherapy. aCD47, an agent for CD47/SIRPα axis blockade, induces modest phagocytic activity and a low response rate for monotherapy, resulting in failures in clinical trials. We showed that BP-mediated ablation of tumours through photothermal effects could serve as an effective strategy for specific immunological stimulation, improving the inherently poor immunogenicity of tumours, which is particularly useful for enhancing cancer immunotherapy. BP in combination with aCD47 blockade activates both innate and adaptive immunities and promotes local and systemic anticancer immune responses, thus offering a synergistically enhanced effect in suppression of tumour progression and in inducing abscopal effects for inhibition of metastatic cancers. Our combination strategy provides a promising platform in which photothermal agents could help to enhance the therapeutic efficacy of immunotherapy.

18.
Nanomaterials (Basel) ; 10(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086490

RESUMO

Sonodynamic therapy (SDT) has emerged as an important modality for cancer treatment. SDT utilizes ultrasound excitation, which overcomes the limitations of light penetration in deep tumors, as encountered by photodynamic therapy (PDT) which uses optical excitations. A comparative study of these modalities using the same sensitizer drug can provide an assessment of their effects. However, the efficiency of SDT and PDT is low in a hypoxic tumor environment, which limits their applications. In this study, we report a hierarchical nanoformulation which contains a Food and Drug Administration (FDA) approved sensitizer chlorin, e6, and a uniquely stable high loading capacity oxygen carrier, perfluoropolyether. This oxygen carrier possesses no measurable cytotoxicity. It delivers oxygen to overcome hypoxia, and at the same time, boosts the efficiency of both SDT and PDT. Moreover, we comparatively analyzed the efficiency of SDT and PDT for tumor treatment throughout the depth of the tissue. Our study demonstrates that the strengths of PDT and SDT could be combined into a single multifunctional nanoplatform, which works well in the hypoxia environment and overcomes the limitations of each modality. The combination of deep tissue penetration by ultrasound and high spatial activation by light for selective treatment of single cells will significantly enhance the scope for therapeutic applications.

19.
ACS Nano ; 14(10): 12781-12795, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32935975

RESUMO

When combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody ZHER2:342 (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic Pseudomonas exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.29 (14 kDa). According to the proposed strategy, the first chemotherapeutic nanoagent is targeted by the affibody to subdomain III and IV of HER2 with 60-fold specificity compared with nontargeted particles, while the second immunotoxin is effectively targeted by DARPin molecule to subdomain I of HER2. We demonstrate that this dual targeting strategy can enhance anticancer therapy of HER2-positive cells with a very strong synergy, which made possible 1000-fold decrease of effective drug concentration in vitro and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo. Moreover, this therapeutic combination prevented the appearance of secondary tumor nodes. Thus, the suggested synergistic strategy utilizing dual targeting of the same oncomarker could give rise to efficient methods for aggressive tumors treatment.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Imunoterapia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Receptor ErbB-2
20.
Nanomaterials (Basel) ; 10(8)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722581

RESUMO

Elemental bismuth (Bi) nanoparticles (NPs), with the high atomic density of the Bi nuclei, could serve as efficient targeted agents for cancer treatment, with applications such as contrast agents for computed tomography (CT) imaging, sensitizers for image-guided X-ray radiotherapy, and photothermal therapy. However, the synthesis of elemental Bi NPs suitable for biological applications is difficult using conventional chemical routes. Here, we explore the fabrication of ultrapure Bi-based nanomaterials by femtosecond laser ablation from a solid Bi target in ambient liquids and characterize them by a variety of techniques, including TEM, SEM, XRD, FTIR, Raman, and optical spectroscopy. We found that laser-ablative synthesis using an elemental Bi solid target leads to the formation of spherical Bi NPs having the mean size of 20-50 nm and a low size-dispersion. The NPs prepared in water experience a fast (within a few minutes) conversion into 400-500 nm flake-like nanosheets, composed of bismuth subcarbonates, (BiO)2CO3 and (BiO)4CO3(OH)2, while the NPs prepared in acetone demonstrate high elemental stability. We introduce a procedure to obtain a stable aqueous solution of elemental Bi NPs suitable for biological applications, based on the coating of Bi NPs prepared in acetone with Pluronic® F68 and their subsequent transfer to water. We also show that the laser-synthesized elemental Bi NPs, due to their vanishing band gap, exhibit remarkable absorption in the infrared range, which can be used for the activation of photothermal therapy in the near IR-to-IR window with maximum optical transparency in biological media. Exempt of any toxic synthetic by-products, laser-ablated elemental Bi NPs present a novel appealing nanoplatform for combination image-guided photoradiotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA