Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Breast Cancer ; 24(2): 93-102.e6, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38114366

RESUMO

BACKGROUND: PreciseDx Breast (PDxBr) is a digital test that predicts early-stage breast cancer recurrence within 6-years of diagnosis. MATERIALS AND METHODS: Using hematoxylin and eosin-stained whole slide images of invasive breast cancer (IBC) and artificial intelligence-enabled morphology feature array, microanatomic features are generated. Morphometric attributes in combination with patient's age, tumor size, stage, and lymph node status predict disease free survival using a proprietary algorithm. Here, analytical validation of the automated annotation process and extracted histologic digital features of the PDxBr test, including impact of methodologic variability on the composite risk score is presented. Studies of precision, repeatability, reproducibility and interference were performed on morphology feature array-derived features. The final risk score was assessed over 20-days with 2-operators, 2-runs/day, and 2-replicates across 8-patients, allowing for calculation of within-run repeatability, between-run and within-laboratory reproducibility. RESULTS: Analytical validation of features derived from whole slide images demonstrated a high degree of precision for tumor segmentation (0.98, 0.98), lymphocyte detection (0.91, 0.93), and mitotic figures (0.85, 0.84). Correlation of variation of the assay risk score for both reproducibility and repeatability were less than 2%, and interference from variation in hematoxylin and eosin staining or tumor thickness was not observed demonstrating assay robustness across standard histopathology preparations. CONCLUSION: In summary, the analytical validation of the digital IBC risk assessment test demonstrated a strong performance across all features in the model and complimented the clinical validation of the assay previously shown to accurately predict recurrence within 6-years in early-stage invasive breast cancer patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Prognóstico , Inteligência Artificial , Amarelo de Eosina-(YS) , Hematoxilina , Reprodutibilidade dos Testes
2.
Breast Cancer Res ; 24(1): 93, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539895

RESUMO

BACKGROUND: Breast cancer (BC) grading plays a critical role in patient management despite the considerable inter- and intra-observer variability, highlighting the need for decision support tools to improve reproducibility and prognostic accuracy for use in clinical practice. The objective was to evaluate the ability of a digital artificial intelligence (AI) assay (PDxBr) to enrich BC grading and improve risk categorization for predicting recurrence. METHODS: In our population-based longitudinal clinical development and validation study, we enrolled 2075 patients from Mount Sinai Hospital with infiltrating ductal carcinoma of the breast. With 3:1 balanced training and validation cohorts, patients were retrospectively followed for a median of 6 years. The main outcome was to validate an automated BC phenotyping system combined with clinical features to produce a binomial risk score predicting BC recurrence at diagnosis. RESULTS: The PDxBr training model (n = 1559 patients) had a C-index of 0.78 (95% CI, 0.76-0.81) versus clinical 0.71 (95% CI, 0.67-0.74) and image feature models 0.72 (95% CI, 0.70-0.74). A risk score of 58 (scale 0-100) stratified patients as low or high risk, hazard ratio (HR) 5.5 (95% CI 4.19-7.2, p < 0.001), with a sensitivity 0.71, specificity 0.77, NPV 0.95, and PPV 0.32 for predicting BC recurrence within 6 years. In the validation cohort (n = 516), the C-index was 0.75 (95% CI, 0.72-0.79) versus clinical 0.71 (95% CI 0.66-0.75) versus image feature models 0.67 (95% CI, 0.63-071). The validation cohort had an HR of 4.4 (95% CI 2.7-7.1, p < 0.001), sensitivity of 0.60, specificity 0.77, NPV 0.94, and PPV 0.24 for predicting BC recurrence within 6 years. PDxBr also improved Oncotype Recurrence Score (RS) performance: RS 31 cutoff, C-index of 0.36 (95% CI 0.26-0.45), sensitivity 37%, specificity 48%, HR 0.48, p = 0.04 versus Oncotype RS plus AI-grade C-index 0.72 (95% CI 0.67-0.79), sensitivity 78%, specificity 49%, HR 4.6, p < 0.001 versus Oncotype RS plus PDxBr, C-index 0.76 (95% CI 0.70-0.82), sensitivity 67%, specificity 80%, HR 6.1, p < 0.001. CONCLUSIONS: PDxBr is a digital BC test combining automated AI-BC prognostic grade with clinical-pathologic features to predict the risk of early-stage BC recurrence. With future validation studies, we anticipate the PDxBr model will enrich current gene expression assays and enhance treatment decision-making.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Inteligência Artificial , Estudos Retrospectivos , Reprodutibilidade dos Testes , Receptor ErbB-2/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico
3.
Acta Neuropathol Commun ; 10(1): 21, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164870

RESUMO

The diagnosis of Parkinson's disease (PD) is challenging at all stages due to variable symptomatology, comorbidities, and mimicking conditions. Postmortem assessment remains the gold standard for a definitive diagnosis. While it is well recognized that PD manifests pathologically in the central nervous system with aggregation of α-synuclein as Lewy bodies and neurites, similar Lewy-type synucleinopathy (LTS) is additionally found in the peripheral nervous system that may be useful as an antemortem biomarker. We have previously found that detection of LTS in submandibular gland (SMG) biopsies is sensitive and specific for advanced PD; however, the sensitivity is suboptimal especially for early-stage disease. Further, visual microscopic assessment of biopsies by a neuropathologist to identify LTS is impractical for large-scale adoption. Here, we trained and validated a convolutional neural network (CNN) for detection of LTS on 283 digital whole slide images (WSI) from 95 unique SMG biopsies. A total of 8,450 LTS and 35,066 background objects were annotated following an inter-rater reliability study with Fleiss Kappa = 0.72. We used transfer learning to train a CNN model to classify image patches (151 × 151 pixels at 20× magnification) with and without the presence of LTS objects. The trained CNN model showed the following performance on image patches: sensitivity: 0.99, specificity: 0.99, precision: 0.81, accuracy: 0.99, and F-1 score: 0.89. We further tested the trained network on 1230 naïve WSI from the same cohort of research subjects comprising 42 PD patients and 14 controls. Logistic regression models trained on features engineered from the CNN predictions on the WSI resulted in sensitivity: 0.71, specificity: 0.65, precision: 0.86, accuracy: 0.69, and F-1 score: 0.76 in predicting clinical PD status, and 0.64 accuracy in predicting PD stage, outperforming expert neuropathologist LTS density scoring in terms of sensitivity but not specificity. These findings demonstrate the practical utility of a CNN detector in screening for LTS, which can translate into a computational tool to facilitate the antemortem tissue-based diagnosis of PD in clinical settings.


Assuntos
Redes Neurais de Computação , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Glândula Submandibular/patologia , Idoso , Biópsia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Med Image Anal ; 56: 122-139, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31226662

RESUMO

Breast cancer is the most common invasive cancer in women, affecting more than 10% of women worldwide. Microscopic analysis of a biopsy remains one of the most important methods to diagnose the type of breast cancer. This requires specialized analysis by pathologists, in a task that i) is highly time- and cost-consuming and ii) often leads to nonconsensual results. The relevance and potential of automatic classification algorithms using hematoxylin-eosin stained histopathological images has already been demonstrated, but the reported results are still sub-optimal for clinical use. With the goal of advancing the state-of-the-art in automatic classification, the Grand Challenge on BreAst Cancer Histology images (BACH) was organized in conjunction with the 15th International Conference on Image Analysis and Recognition (ICIAR 2018). BACH aimed at the classification and localization of clinically relevant histopathological classes in microscopy and whole-slide images from a large annotated dataset, specifically compiled and made publicly available for the challenge. Following a positive response from the scientific community, a total of 64 submissions, out of 677 registrations, effectively entered the competition. The submitted algorithms improved the state-of-the-art in automatic classification of breast cancer with microscopy images to an accuracy of 87%. Convolutional neuronal networks were the most successful methodology in the BACH challenge. Detailed analysis of the collective results allowed the identification of remaining challenges in the field and recommendations for future developments. The BACH dataset remains publicly available as to promote further improvements to the field of automatic classification in digital pathology.


Assuntos
Neoplasias da Mama/patologia , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Algoritmos , Feminino , Humanos , Microscopia , Coloração e Rotulagem
5.
Magn Reson Imaging ; 36: 24-31, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27742434

RESUMO

PURPOSE: To compare compressed diffusion spectrum imaging (CS-DSI) with diffusion tensor imaging (DTI) in patients with intracranial masses. We hypothesized that CS-DSI would provide superior visualization of the motor and language tracts. MATERIALS AND METHODS: We retrospectively analyzed 25 consecutive patients with intracranial masses who underwent DTI and CS-DSI for preoperative planning. Directionally-encoded anisotropy maps, and streamline hand corticospinal motor tracts and arcuate fasciculus language tracts were graded according to a 3-point scale. Tract counts, anisotropy, and lengths were also calculated. Comparisons were made using exact marginal homogeneity, McNemar's and Wilcoxon signed-rank tests. RESULTS: Readers preferred the CS-DSI over DTI anisotropy maps in 92% of the cases, and the CS-DSI over DTI tracts in 84%. The motor tracts were graded as excellent in 80% of cases for CS-DSI versus 52% for DTI; 58% of the motor tracts graded as acceptable in DTI were graded as excellent in CS-DSI (p=0.02). The language tracts were graded as excellent in 68% for CS-DSI versus none for DTI; 78% of the language tracts graded as acceptable by DTI were graded as excellent by CS-DSI (p<0.001). CS-DSI demonstrated smaller normalized mean differences than DTI for motor tract counts, anisotropy and language tract counts (p≤0.01). CONCLUSION: CS-DSI was preferred over DTI for the evaluation of motor and language white matter tracts in patients with intracranial masses. Results suggest that CS-DSI may be more useful than DTI for preoperative planning purposes.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
Artigo em Inglês | MEDLINE | ID: mdl-25346953

RESUMO

Analysis of 4D medical images presenting pathology (i.e., lesions) is significantly challenging due to the presence of complex changes over time. Image analysis methods for 4D images with lesions need to account for changes in brain structures due to deformation, as well as the formation and deletion of new structures (e.g., edema, bleeding) due to the physiological processes associated with damage, intervention, and recovery. We propose a novel framework that models 4D changes in pathological anatomy across time, and provides explicit mapping from a healthy template to subjects with pathology. Moreover, our framework uses transfer learning to leverage rich information from a known source domain, where we have a collection of completely segmented images, to yield effective appearance models for the input target domain. The automatic 4D segmentation method uses a novel domain adaptation technique for generative kernel density models to transfer information between different domains, resulting in a fully automatic method that requires no user interaction. We demonstrate the effectiveness of our novel approach with the analysis of 4D images of traumatic brain injury (TBI), using a synthetic tumor database as the source domain.

7.
Inf Process Med Imaging ; 23: 718-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24684012

RESUMO

Shape regression is emerging as an important tool for the statistical analysis of time dependent shapes. In this paper, we develop a new generative model which describes shape change over time, by extending simple linear regression to the space of shapes represented as currents in the large deformation diffeomorphic metric mapping (LDDMM) framework. By analogy with linear regression, we estimate a baseline shape (intercept) and initial momenta (slope) which fully parameterize the geodesic shape evolution. This is in contrast to previous shape regression methods which assume the baseline shape is fixed. We further leverage a control point formulation, which provides a discrete and low dimensional parameterization of large diffeomorphic transformations. This flexible system decouples the parameterization of deformations from the specific shape representation, allowing the user to define the dimensionality of the deformation parameters. We present an optimization scheme that estimates the baseline shape, location of the control points, and initial momenta simultaneously via a single gradient descent algorithm. Finally, we demonstrate our proposed method on synthetic data as well as real anatomical shape complexes.


Assuntos
Algoritmos , Inteligência Artificial , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Interpretação Estatística de Dados , Humanos , Aumento da Imagem/métodos , Análise de Regressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Med Image Anal ; 13(2): 297-311, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19119055

RESUMO

Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images presenting pathology, which can both alter tissue appearance through infiltration and cause geometric distortions. Systems for generating synthetic images with user-defined degradation by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation methods. Such systems do not yet offer simulation of sufficiently realistic looking pathology. This paper presents a system that combines physical and statistical modeling to generate synthetic multi-modal 3D brain MRI with tumor and edema, along with the underlying anatomical ground truth, Main emphasis is placed on simulation of the major effects known for tumor MRI, such as contrast enhancement, local distortion of healthy tissue, infiltrating edema adjacent to tumors, destruction and deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and pathology. The new method synthesizes pathology in multi-modal MRI and diffusion tensor imaging (DTI) by simulating mass effect, warping and destruction of white matter fibers, and infiltration of brain tissues by tumor cells. We generate synthetic contrast enhanced MR images by simulating the accumulation of contrast agent within the brain. The appearance of the the brain tissue and tumor in MRI is simulated by synthesizing texture images from real MR images. The proposed method is able to generate synthetic ground truth and synthesized MR images with tumor and edema that exhibit comparable segmentation challenges to real tumor MRI. Such image data sets will find use in segmentation reliability studies, comparison and validation of different segmentation methods, training and teaching, or even in evaluating standards for tumor size like the RECIST criteria (response evaluation criteria in solid tumors).


Assuntos
Inteligência Artificial , Neoplasias Encefálicas/diagnóstico , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Neurológicos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-16685825

RESUMO

Validation and method of comparison for segmentation of magnetic resonance images (MRI) presenting pathology is a challenging task due to the lack of reliable ground truth. We propose a new method for generating synthetic multi-modal 3D brain MRI with tumor and edema, along with the ground truth. Tumor mass effect is modeled using a biomechanical model, while tumor and edema infiltration is modeled as a reaction-diffusion process that is guided by a modified diffusion tensor MRI. We propose the use of warping and geodesic interpolation on the diffusion tensors to simulate the displacement and the destruction of the white matter fibers. We also model the process where the contrast agent tends to accumulate in cortical csf regions and active tumor regions to obtain contrast enhanced T1w MR image that appear realistic. The result is simulated multi-modal MRI with ground truth available as sets of probability maps. The system will be able to generate large sets of simulation images with tumors of varying size, shape and location, and will additionally generate infiltrated and deformed healthy tissue probabilities.


Assuntos
Algoritmos , Neoplasias Encefálicas/diagnóstico , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Validação de Programas de Computador , Inteligência Artificial , Humanos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Med Image Anal ; 8(3): 275-83, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15450222

RESUMO

This paper describes a framework for automatic brain tumor segmentation from MR images. The detection of edema is done simultaneously with tumor segmentation, as the knowledge of the extent of edema is important for diagnosis, planning, and treatment. Whereas many other tumor segmentation methods rely on the intensity enhancement produced by the gadolinium contrast agent in the T1-weighted image, the method proposed here does not require contrast enhanced image channels. The only required input for the segmentation procedure is the T2 MR image channel, but it can make use of any additional non-enhanced image channels for improved tissue segmentation. The segmentation framework is composed of three stages. First, we detect abnormal regions using a registered brain atlas as a model for healthy brains. We then make use of the robust estimates of the location and dispersion of the normal brain tissue intensity clusters to determine the intensity properties of the different tissue types. In the second stage, we determine from the T2 image intensities whether edema appears together with tumor in the abnormal regions. Finally, we apply geometric and spatial constraints to the detected tumor and edema regions. The segmentation procedure has been applied to three real datasets, representing different tumor shapes, locations, sizes, image intensities, and enhancement.


Assuntos
Edema Encefálico/patologia , Neoplasias Encefálicas/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Automação , Humanos
11.
Acad Radiol ; 10(12): 1341-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14697002

RESUMO

RATIONALE AND OBJECTIVES: Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. An automated system has been developed for brain tumor segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments white matter, grey matter, cerebrospinal fluid, and edema. The segmentation of pathology and healthy structures is crucial for surgical planning and intervention. MATERIALS AND METHODS: The method performs the segmentation of a registered set of magnetic resonance images using an expectation-maximization scheme. The segmentation is guided by a spatial probabilistic atlas that contains expert prior knowledge about brain structures. This atlas is modified with the subject-specific brain tumor prior that is computed based on contrast enhancement. RESULTS: Five cases with different types of tumors are selected for evaluation. The results obtained from the automatic segmentation program are compared with results from manual and semi-automated methods. The automated method yields results that have surface distances at roughly 1-4 mm compared with the manual results. CONCLUSION: The automated method can be applied to different types of tumors. Although its performance is below that of the semi-automated method, it has the advantage of requiring no user supervision.


Assuntos
Neoplasias Encefálicas/patologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Automação , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA