Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Mammary Gland Biol Neoplasia ; 28(1): 13, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294349

RESUMO

The protein tyrosine phosphatase SHP2 activates oncogenic pathways downstream of most receptor tyrosine kinases (RTK) and has been implicated in various cancer types, including the highly aggressive subtype of triple-negative breast cancer (TNBC). Although allosteric inhibitors of SHP2 have been developed and are currently being evaluated in clinical trials, neither the mechanisms of the resistance to these agents, nor the means to circumvent such resistance have been clearly defined. The PI3K signaling pathway is also hyperactivated in breast cancer and contributes to resistance to anticancer therapies. When PI3K is inhibited, resistance also develops for example via activation of RTKs. We therefore assessed the effect of targeting PI3K and SHP2 alone or in combination in preclinical models of metastatic TNBC. In addition to the beneficial inhibitory effects of SHP2 alone, dual PI3K/SHP2 treatment decreased primary tumor growth synergistically, blocked the formation of lung metastases, and increased survival in preclinical models. Mechanistically, transcriptome and phospho-proteome analyses revealed that resistance to SHP2 inhibition is mediated by PDGFRß-evoked activation of PI3K signaling. Altogether, our data provide a rationale for co-targeting of SHP2 and PI3K in metastatic TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Transdução de Sinais , Linhagem Celular Tumoral
2.
Cell Rep Med ; 4(4): 101002, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37044095

RESUMO

A genome-wide PiggyBac transposon-mediated screen and a resistance screen in a PIK3CAH1047R-mutated murine tumor model reveal NF1 loss in mammary tumors resistant to the phosphatidylinositol 3-kinase α (PI3Kα)-selective inhibitor alpelisib. Depletion of NF1 in PIK3CAH1047R breast cancer cell lines and a patient-derived organoid model shows that NF1 loss reduces sensitivity to PI3Kα inhibition and correlates with enhanced glycolysis and lower levels of reactive oxygen species (ROS). Unexpectedly, the antioxidant N-acetylcysteine (NAC) sensitizes NF1 knockout cells to PI3Kα inhibition and reverts their glycolytic phenotype. Global phospho-proteomics indicates that combination with NAC enhances the inhibitory effect of alpelisib on mTOR signaling. In public datasets of human breast cancer, we find that NF1 is frequently mutated and that such mutations are enriched in metastases, an indication for which use of PI3Kα inhibitors has been approved. Our results raise the attractive possibility of combining PI3Kα inhibition with NAC supplementation, especially in patients with drug-resistant metastases associated with NF1 loss.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinase , Acetilcisteína/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/genética
3.
Oncogene ; 41(39): 4459-4473, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008466

RESUMO

Plasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g., estrogen receptor α (ERα), and its high cellular plasticity results in greater aggressiveness and poorer prognosis than other subtypes. Whether plasticity itself represents a potential vulnerability of cancer cells is not clear. However, we show here that cancer cell plasticity can be exploited to differentiate triple-negative breast cancer (TNBC). Using a high-throughput imaging-based reporter drug screen with 9 501 compounds, we have identified three polo-like kinase 1 (PLK1) inhibitors as major inducers of ERα protein expression and downstream activity in TNBC cells. PLK1 inhibition upregulates a cell differentiation program characterized by increased DNA damage, mitotic arrest, and ultimately cell death. Furthermore, cells surviving PLK1 inhibition have decreased tumorigenic potential, and targeting PLK1 in already established tumours reduces tumour growth both in cell line- and patient-derived xenograft models. In addition, the upregulation of genes upon PLK1 inhibition correlates with their expression in normal breast tissue and with better overall survival in breast cancer patients. Our results indicate that differentiation therapy based on PLK1 inhibition is a potential alternative strategy to treat TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Nat Struct Mol Biol ; 26(5): 361-371, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061526

RESUMO

Histone lysine methylation is generally performed by SET domain methyltransferases and regulates chromatin structure and gene expression. Here, we identify human C21orf127 (HEMK2, N6AMT1, PrmC), a member of the seven-ß-strand family of putative methyltransferases, as a novel histone lysine methyltransferase. C21orf127 functions as an obligate heterodimer with TRMT112, writing the methylation mark on lysine 12 of histone H4 (H4K12) in vitro and in vivo. We characterized H4K12 recognition by solving the crystal structure of human C21orf127-TRMT112, hereafter termed 'lysine methyltransferase 9' (KMT9), in complex with S-adenosyl-homocysteine and H4K12me1 peptide. Additional analyses revealed enrichment for KMT9 and H4K12me1 at the promoters of numerous genes encoding cell cycle regulators and control of cell cycle progression by KMT9. Importantly, KMT9 depletion severely affects the proliferation of androgen receptor-dependent, as well as that of castration- and enzalutamide-resistant prostate cancer cells and xenograft tumors. Our data link H4K12 methylation with KMT9-dependent regulation of androgen-independent prostate tumor cell proliferation, thereby providing a promising paradigm for the treatment of castration-resistant prostate cancer.


Assuntos
Proliferação de Células/fisiologia , Histonas/metabolismo , Lisina/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Linhagem Celular Tumoral , Dimerização , Histonas/química , Humanos , Masculino , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/fisiologia
5.
Mol Oncol ; 13(2): 456-479, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556643

RESUMO

A disintegrin and a metalloprotease (ADAM)-9 is a metzincin cell-surface protease with strongly elevated expression in solid tumors, including pancreatic ductal adenocarcinoma (PDAC). In this study, we performed immunohistochemistry (IHC) of a tissue microarray (TMA) to examine the expression of ADAM9 in a cohort of >100 clinically annotated PDAC cases. We report that ADAM9 is prominently expressed by PDAC tumor cells, and increased ADAM9 expression levels correlate with poor tumor grading (P = 0.027) and the presence of vasculature invasion (P = 0.017). We employed gene expression silencing to generate a loss-of-function system for ADAM9 in two established PDAC cell lines. In vitro analysis showed that loss of ADAM9 does not impede cellular proliferation and invasiveness in basement membrane. However, ADAM9 plays a crucial role in mediating cell migration and adhesion to extracellular matrix substrates such as fibronectin, tenascin, and vitronectin. This effect appears to depend on its catalytic activity. In addition, ADAM9 facilitates anchorage-independent growth. In AsPC1 cells, but not in MiaPaCa-2 cells, we noted a pronounced yet heterogeneous impact of ADAM9 on the abundance of various integrins, a process that we characterized as post-translational regulation. Sprout formation of human umbilical vein endothelial cells (HUVECs) is promoted by ADAM9, as examined by transfer of cancer cell conditioned medium; this finding further supports a pro-angiogenic role of ADAM9 expressed by PDAC cancer cells. Immunoblotting analysis of cancer cell conditioned medium highlighted that ADAM9 regulates the levels of angiogenic factors, including shed heparin-binding EGF-like growth factor (HB-EGF). Finally, we carried out orthotopic seeding of either wild-type AsPC-1 cells or AsPC-1 cells with silenced ADAM9 expression into murine pancreas. In this in vivo setting, ADAM9 was also found to foster angiogenesis without an impact on tumor cell proliferation. In summary, our results characterize ADAM9 as an important regulator in PDAC tumor biology with a strong pro-angiogenic impact.


Assuntos
Proteínas ADAM/metabolismo , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/irrigação sanguínea , Carcinoma Ductal Pancreático/patologia , Proteínas de Membrana/metabolismo , Adenocarcinoma/genética , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Biocatálise , Carcinoma Ductal Pancreático/genética , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Estudos de Coortes , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrinas/metabolismo , Linfangiogênese/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Gradação de Tumores , Invasividade Neoplásica , Neovascularização Patológica/genética , Comunicação Parácrina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Gencitabina
6.
APL Bioeng ; 2(3): 031908, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31069317

RESUMO

Aberrant activation of epithelial-mesenchymal transition (EMT) in carcinoma cells contributes to increased migration and invasion, metastasis, drug resistance, and tumor-initiating capacity. EMT is not always a binary process; rather, cells may exhibit a hybrid epithelial/mesenchymal (E/M) phenotype. ZEB1-a key transcription factor driving EMT-can both induce and maintain a mesenchymal phenotype. Recent studies have identified two novel autocrine feedback loops utilizing epithelial splicing regulatory protein 1 (ESRP1), hyaluronic acid synthase 2 (HAS2), and CD44 which maintain high levels of ZEB1. However, how the crosstalk between these feedback loops alters the dynamics of epithelial-hybrid-mesenchymal transition remains elusive. Here, using an integrated theoretical-experimental framework, we identify that these feedback loops can enable cells to stably maintain a hybrid E/M phenotype. Moreover, computational analysis identifies the regulation of ESRP1 as a crucial node, a prediction that is validated by experiments showing that knockdown of ESRP1 in stable hybrid E/M H1975 cells drives EMT. Finally, in multiple breast cancer datasets, high levels of ESRP1, ESRP1/HAS2, and ESRP1/ZEB1 correlate with poor prognosis, supporting the relevance of ZEB1/ESRP1 and ZEB1/HAS2 axes in tumor progression. Together, our results unravel how these interconnected feedback loops act in concert to regulate ZEB1 levels and to drive the dynamics of epithelial-hybrid-mesenchymal transition.

7.
Cancer Res ; 77(21): 5900-5912, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28883001

RESUMO

Traditional treatments for breast cancer fail to address therapy-resistant cancer stem-like cells that have been characterized by changes in epigenetic regulators such as the lysine demethylase KDM4. Here, we describe an orally available, selective and potent KDM4 inhibitor (QC6352) with unique preclinical characteristics. To assess the antitumor properties of QC6352, we established a method to isolate and propagate breast cancer stem-like cells (BCSC) from individual triple-negative tumors resected from patients after neoadjuvant chemotherapy. Limiting-dilution orthotopic xenografts of these BCSCs regenerated original patient tumor histology and gene expression. QC6352 blocked BCSC proliferation, sphere formation, and xenograft tumor formation. QC6352 also abrogated expression of EGFR, which drives the growth of therapy-resistant triple-negative breast cancer cells. Our findings validate a unique BCSC culture system for drug screening and offer preclinical proof of concept for KDM4 inhibition as a new strategy to treat triple-negative breast cancer. Cancer Res; 77(21); 5900-12. ©2017 AACR.


Assuntos
Proliferação de Células/genética , Histona Desmetilases com o Domínio Jumonji/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Interferência de RNA , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 8(7): 11530-11543, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28086235

RESUMO

Cancer metastasis is the main reason for poor patient survival. Tumor cells delaminate from the primary tumor by induction of epithelial-mesenchymal transition (EMT). EMT is mediated by key transcription factors, including ZEB1, activated by tumor cell interactions with stromal cells and the extracellular matrix (ECM). ZEB1-mediated EMT and motility is accompanied by substantial cell reprogramming and the acquisition of a stemness phenotype. However, understanding of the underlying mechanism is still incomplete. We identified hyaluronic acid (HA), one major ECM proteoglycan and enriched in mammary tumors, to support EMT and enhance ZEB1 expression in cooperation with CD44s. In breast cancer cell lines HA is synthesized mainly by HAS2, which was already shown to be implicated in cancer progression. ZEB1 and HAS2 expression strongly correlates in various cancer entities and high HAS2 levels associate with an early relapse. We identified HAS2, tumor cell-derived HA and ZEB1 to form a positive feedback loop as ZEB1, elevated by HA, directly activates HAS2 expression. In an in vitro differentiation model HA-conditioned medium of breast cancer cells is enhancing osteoclast formation, an indicator of tumor cell-induced osteolysis that facilitates formation of bone metastasis. In combination with the previously identified ZEB1/ESRP1/CD44s feedback loop, we found a novel autocrine mechanism how ZEB1 is accelerating EMT.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucuronosiltransferase/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Retroalimentação Fisiológica/fisiologia , Feminino , Imunofluorescência , Humanos , Hialuronan Sintases , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Invasividade Neoplásica/patologia , Osteoclastos/patologia , Reação em Cadeia da Polimerase
9.
Oncotarget ; 7(50): 83278-83293, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27829216

RESUMO

Cancers are heterogeneous by nature. While traditional oncology screens commonly use a single endpoint of cell viability, altering the phenotype of tumor-initiating cells may reveal alternative targets that regulate cellular growth by processes other than apoptosis or cell division. We evaluated the impact of knocking down expression of 420 kinases in bi-lineage triple-negative breast cancer (TNBC) cells that express characteristics of both myoepithelial and luminal cells. Knockdown of ERN1 or ALPK1 induces bi-lineage MDA-MB-468 cells to lose the myoepithelial marker keratin 5 but not the luminal markers keratin 8 and GATA3. In addition, these cells exhibit increased ß-casein production. These changes are associated with decreased proliferation and clonogenicity in spheroid cultures and anchorage-independent growth assays. Confirmation of these assays was completed in vivo, where ERN1- or ALPK1-deficient TNBC cells are less tumorigenic. Finally, treatment with K252a, a kinase inhibitor active on ERN1, similarly impairs anchorage-independent growth of multiple breast cancer cell lines. This study supports the strategy to identify new molecular targets for types of cancer driven by cells that retain some capacity for normal differentiation to a non-tumorigenic phenotype. ERN1 and ALPK1 are potential targets for therapeutic development.


Assuntos
Diferenciação Celular , Endorribonucleases/metabolismo , Células-Tronco Neoplásicas/enzimologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Antineoplásicos/farmacologia , Carbazóis/farmacologia , Caseínas/genética , Caseínas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Alcaloides Indólicos/farmacologia , Queratina-5/genética , Queratina-5/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral
10.
Int J Cancer ; 137(11): 2566-77, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26077342

RESUMO

Invasion and metastasis of carcinomas are often activated by induction of aberrant epithelial-mesenchymal transition (EMT). This is mainly driven by the transcription factor ZEB1, promoting tumor-initiating capacity correlated with increased expression of the putative stem cell marker CD44. However, the direct link between ZEB1, CD44 and tumourigenesis is still enigmatic. Remarkably, EMT-induced repression of ESRP1 controls alternative splicing of CD44, causing a shift in the expression from the variant CD44v to the standard CD44s isoform. We analyzed whether CD44 and ZEB1 regulate each other and show that ZEB1 controls CD44s splicing by repression of ESRP1 in breast and pancreatic cancer. Intriguingly, CD44s itself activates the expression of ZEB1, resulting in a self-sustaining ZEB1 and CD44s expression. Activation of this novel CD44s-ZEB1 regulatory loop has functional impact on tumor cells, as evident by increased tumor-sphere initiation capacity, drug-resistance and tumor recurrence. In summary, we identified a self-enforcing feedback loop that employs CD44s to activate ZEB1 expression. This renders tumor cell stemness independent of external stimuli, as ZEB1 downregulates ESRP1, further promoting CD44s isoform synthesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Receptores de Hialuronatos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fatores de Transcrição/genética , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Células MCF-7 , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Proteínas de Ligação a RNA/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
11.
Oncotarget ; 6(16): 14399-412, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25973542

RESUMO

Tumor cell invasion, dissemination and metastasis is triggered by an aberrant activation of epithelial-to-mesenchymal transition (EMT), often mediated by the transcription factor ZEB1. Disseminating tumor cells must acquire specific features that allow them to colonize at different organ sites. Here we identify a set of genes that is highly expressed in breast cancer bone metastasis and activated by ZEB1. This gene set includes various secreted factors, e.g. the BMP-inhibitor FST, that are described to reorganize the bone microenvironment. By inactivating BMP-signaling, BMP-inhibitors are well-known to induce osteolysis in development and disease. We here demonstrate that the expression of ZEB1 and BMP-inhibitors is correlated with bone metastasis, but not with brain or lung metastasis of breast cancer patients. In addition, we show that this correlated expression pattern is causally linked, as ZEB1 induces the expression of the BMP-inhibitors NOG, FST and CHRDL1 both by directly increasing their gene transcription, as well as by indirectly suppressing their reduction via miR-200 family members. Consequently, ZEB1 stimulates BMP-inhibitor mediated osteoclast differentiation. These findings suggest that ZEB1 is not only driving EMT, but also contributes to the formation of osteolytic bone metastases in breast cancer.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Transfecção , Homeobox 1 de Ligação a E-box em Dedo de Zinco
12.
EMBO Mol Med ; 7(6): 831-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25872941

RESUMO

Therapy resistance is a major clinical problem in cancer medicine and crucial for disease relapse and progression. Therefore, the clinical need to overcome it, particularly for aggressive tumors such as pancreatic cancer, is very high. Aberrant activation of an epithelial-mesenchymal transition (EMT) and an associated cancer stem cell phenotype are considered a major cause of therapy resistance. Particularly, the EMT-activator ZEB1 was shown to confer stemness and resistance. We applied a systematic, stepwise strategy to interfere with ZEB1 function, aiming to overcome drug resistance. This led to the identification of both its target gene miR-203 as a major drug sensitizer and subsequently the class I HDAC inhibitor mocetinostat as epigenetic drug to interfere with ZEB1 function, restore miR-203 expression, repress stemness properties, and induce sensitivity against chemotherapy. Thereby, mocetinostat turned out to be more effective than other HDAC inhibitors, such as SAHA, indicating the relevance of the screening strategy. Our data encourage the application of mechanism-based combinations of selected epigenetic drugs with standard chemotherapy for the rational treatment of aggressive solid tumors, such as pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/metabolismo , Resistência a Medicamentos , Inibidores de Histona Desacetilases/metabolismo , Proteínas de Homeodomínio/metabolismo , Pirimidinas/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , MicroRNAs/biossíntese , Homeobox 1 de Ligação a E-box em Dedo de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA