Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38537632

RESUMO

This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.

2.
J Med Chem ; 63(15): 8025-8042, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32338514

RESUMO

Inhibition of monopolar spindle 1 (MPS1) kinase represents a novel approach to cancer treatment: instead of arresting the cell cycle in tumor cells, cells are driven into mitosis irrespective of DNA damage and unattached/misattached chromosomes, resulting in aneuploidy and cell death. Starting points for our optimization efforts with the goal to identify MPS1 inhibitors were two HTS hits from the distinct chemical series "triazolopyridines" and "imidazopyrazines". The major initial issue of the triazolopyridine series was the moderate potency of the HTS hits. The imidazopyrazine series displayed more than 10-fold higher potencies; however, in the early project phase, this series suffered from poor metabolic stability. Here, we outline the evolution of the two hit series to clinical candidates BAY 1161909 and BAY 1217389 and reveal how both clinical candidates bind to the ATP site of MPS1 kinase, while addressing different pockets utilizing different binding interactions, along with their synthesis and preclinical characterization in selected in vivo efficacy models.


Assuntos
Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fuso Acromático/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Cães , Feminino , Células HT29 , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/antagonistas & inibidores , Ratos , Ratos Wistar , Fuso Acromático/metabolismo , Resultado do Tratamento
3.
Clin Cancer Res ; 25(4): 1404-1414, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429199

RESUMO

PURPOSE: The catalytic function of BUB1 is required for chromosome arm resolution and positioning of the chromosomal passenger complex for resolution of spindle attachment errors and plays only a minor role in spindle assembly checkpoint activation. Here, we present the identification and preclinical pharmacologic profile of the first BUB1 kinase inhibitor with good bioavailability. EXPERIMENTAL DESIGN: The Bayer compound library was screened for BUB1 kinase inhibitors and medicinal chemistry efforts to improve target affinity and physicochemical and pharmacokinetic parameters resulting in the identification of BAY 1816032 were performed. BAY 1816032 was characterized for kinase selectivity, inhibition of BUB1 signaling, and inhibition of tumor cell proliferation alone and in combination with taxanes, ATR, and PARP inhibitors. Effects on tumor growth in vivo were evaluated using human triple-negative breast xenograft models. RESULTS: The highly selective compound BAY 1816032 showed long target residence time and induced chromosome mis-segregation upon combination with low concentrations of paclitaxel. It was synergistic or additive in combination with paclitaxel or docetaxel, as well as with ATR or PARP inhibitors in cellular assays. Tumor xenograft studies demonstrated a strong and statistically significant reduction of tumor size and excellent tolerability upon combination of BAY 1816032 with paclitaxel or olaparib as compared with the respective monotherapies. CONCLUSIONS: Our findings suggest clinical proof-of-concept studies evaluating BAY 1816032 in combination with taxanes or PARP inhibitors to enhance their efficacy and potentially overcome resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Taxoides/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Death Dis ; 8(3): e2709, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358364

RESUMO

Owing to lagging or insufficient neo-angiogenesis, hypoxia is a feature of most solid tumors. Hypoxic tumor regions contribute to resistance against antiproliferative chemotherapeutics, radiotherapy and immunotherapy. Targeting cells in hypoxic tumor areas is therefore an important strategy for cancer treatment. Most approaches for targeting hypoxic cells focus on the inhibition of hypoxia adaption pathways but only a limited number of compounds with the potential to specifically target hypoxic tumor regions have been identified. By using tumor spheroids in hypoxic conditions as screening system, we identified a set of compounds, including the phenothiazine antipsychotic Fluphenazine, as hits with novel mode of action. Fluphenazine functionally inhibits acid sphingomyelinase and causes cellular sphingomyelin accumulation, which induces cancer cell death specifically in hypoxic tumor spheroids. Moreover, we found that functional inhibition of acid sphingomyelinase leads to overactivation of hypoxia stress-response pathways and that hypoxia-specific cell death is mediated by the stress-responsive transcription factor ATF4. Taken together, the here presented data suggest a novel, yet unexplored mechanism in which induction of sphingolipid stress leads to the overactivation of hypoxia stress-response pathways and thereby promotes their pro-apoptotic tumor-suppressor functions to specifically kill cells in hypoxic tumor areas.


Assuntos
Neoplasias do Colo/enzimologia , Flufenazina/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Esfingomielina Fosfodiesterase/genética
5.
J Biol Chem ; 291(21): 11252-67, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27030009

RESUMO

The spindle assembly checkpoint (SAC) is an essential safeguarding mechanism devised to ensure equal chromosome distribution in daughter cells upon mitosis. The proteins Bub3 and BubR1 are key components of the mitotic checkpoint complex, an essential part of the molecular machinery on which the SAC relies. In the present work we have performed a detailed functional and biochemical characterization of the interaction between human Bub3 and BubR1 in cells and in vitro Our results demonstrate that genetic knockdown of Bub3 abrogates the SAC, promotes apoptosis, and inhibits the proliferation of human cancer cells. We also show that the integrity of the human mitotic checkpoint complex depends on the specific recognition between BubR1 and Bub3, for which the BubR1 Gle2 binding sequence motif is essential. This 1:1 binding event is high affinity, enthalpy-driven and with slow dissociation kinetics. The affinity, kinetics, and thermodynamic parameters of the interaction are differentially modulated by small regions in the N and C termini of the Gle2 binding domain sequence, suggesting the existence of "hotspots" for this protein-protein interaction. Furthermore, we show that specific disruption of endogenous BubR1·Bub3 complexes in human cancer cells phenocopies the effects observed in gene targeting experiments. Our work enhances the current understanding of key members of the SAC and paves the road for the pursuit of novel targeted cancer therapies based on SAC inhibition.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Apoptose , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Cinética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Células MCF-7 , Modelos Moleculares , Proteínas de Ligação a Poli-ADP-Ribose , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fuso Acromático/genética , Termodinâmica
6.
Mol Cancer Ther ; 15(4): 583-92, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26832791

RESUMO

Monopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile. In cellular mechanistic assays, both Mps1 inhibitors abrogated nocodazole-induced SAC activity and induced premature exit from mitosis ("mitotic breakthrough"), resulting in multinuclearity and tumor cell death. Both compounds efficiently inhibited tumor cell proliferation in vitro (IC50 nmol/L range). In vivo, BAY 1161909 and BAY 1217389 achieved moderate efficacy in monotherapy in tumor xenograft studies. However, in line with its unique mode of action, when combined with paclitaxel, low doses of Mps1 inhibitor reduced paclitaxel-induced mitotic arrest by the weakening of SAC activity. As a result, combination therapy strongly improved efficacy over paclitaxel or Mps1 inhibitor monotreatment at the respective MTDs in a broad range of xenograft models, including those showing acquired or intrinsic paclitaxel resistance. Both Mps1 inhibitors showed good tolerability without adding toxicity to paclitaxel monotherapy. These preclinical findings validate the innovative concept of SAC abrogation for cancer therapy and justify clinical proof-of-concept studies evaluating the Mps1 inhibitors BAY 1161909 and BAY 1217389 in combination with antimitotic cancer drugs to enhance their efficacy and potentially overcome resistance. Mol Cancer Ther; 15(4); 583-92. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Ratos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Exp Cell Res ; 339(1): 35-43, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26475730

RESUMO

Invasion processes underlie or accompany several pathological processes but only a limited number of high-throughput capable phenotypic models exist to test anti-invasive compounds in vitro. We here evaluated 3D co-cultures as a high-content phenotypic screening system for fibrotic invasive processes. 3D multicellular spheroids were used as living tissue surrogates in co-culture with fluorescently labeled lung fibroblasts to monitor invasion processes by automated microscopy. This setup was used to screen a compound library containing 480 known bioactive substances. Identified hits prevented fibroblast invasion and could be subdivided into two hit classes. First, Prostaglandins were shown to prevent fibroblast invasion, most likely mediated by the prostaglandin EP2 receptor and generation of cAMP. Additionally, Rho-associated protein kinase (ROCK) inhibitors prevented fibroblast invasion, possibly by inactivation of myosin II. Importantly, both Prostaglandins and ROCK inhibitors are potential treatment options shown to be effective in in vitro and in vivo models of fibrotic diseases. This validates the presented novel phenotypic screening approach for the evaluation of potential inhibitors and the identification of novel compounds with activity in diseases that are associated with fibroblast invasion.


Assuntos
Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Fibroblastos/patologia , Ensaios de Triagem em Larga Escala , Prostaglandinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Esferoides Celulares/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Técnicas Imunoenzimáticas , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
8.
J Biomol Screen ; 20(2): 190-201, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25409661

RESUMO

EZH2 inhibition can decrease global histone H3 lysine 27 trimethylation (H3K27me3) and thereby reactivates silenced tumor suppressor genes. Inhibition of EZH2 is regarded as an option for therapeutic cancer intervention. To identify novel small-molecule (SMOL) inhibitors of EZH2 in drug discovery, trustworthy cellular assays amenable for phenotypic high-throughput screening (HTS) are crucial. We describe a reliable approach that quantifies changes in global levels of histone modification marks using high-content analysis (HCA). The approach was validated in different cell lines by using small interfering RNA and SMOL inhibitors. By automation and miniaturization from a 384-well to 1536-well plate, we demonstrated its utility in conducting phenotypic HTS campaigns and assessing structure-activity relationships (SAR). This assay enables screening of SMOL EZH2 inhibitors and can advance the mechanistic understanding of H3K27me3 suppression, which is crucial with regard to epigenetic therapy. We observed that a decrease in global H3K27me3, induced by EZH2 inhibition, comprises two distinct mechanisms: (1) inhibition of de novo DNA methylation and (II) inhibition of dynamic, replication-independent H3K27me3 turnover. This report describes an HCA assay for primary HTS to identify, profile, and optimize cellular active SMOL inhibitors targeting histone methyltransferases, which could benefit epigenetic drug discovery.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Histonas/metabolismo , Microscopia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Automação Laboratorial , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteína Potenciadora do Homólogo 2 de Zeste , Técnicas de Silenciamento de Genes , Histonas/antagonistas & inibidores , Histonas/genética , Humanos , Concentração Inibidora 50 , Metilação/efeitos dos fármacos , Interferência de RNA , Relação Estrutura-Atividade
9.
Exp Cell Res ; 323(1): 131-143, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24480576

RESUMO

Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions.


Assuntos
Antineoplásicos/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Transporte de Elétrons/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Glucose/metabolismo , Humanos , Estaurosporina/farmacologia , Células Tumorais Cultivadas , Microambiente Tumoral/fisiologia
10.
Mol Biol Cell ; 18(10): 4024-36, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17671160

RESUMO

Polo-like kinase 1 (Plk1) is a key regulator of mitotic progression and cell division in eukaryotes. It is highly expressed in tumor cells and considered a potential target for cancer therapy. Here, we report the discovery and application of a novel potent small-molecule inhibitor of mammalian Plk1, ZK-Thiazolidinone (TAL). We have extensively characterized TAL in vitro and addressed TAL specificity within cells by studying Plk1 functions in sister chromatid separation, centrosome maturation, and spindle assembly. Moreover, we have used TAL for a detailed analysis of Plk1 in relation to PICH and PRC1, two prominent interaction partners implicated in spindle assembly checkpoint function and cytokinesis, respectively. Specifically, we show that Plk1, when inactivated by TAL, spreads over the arms of chromosomes, resembling the localization of its binding partner PICH, and that both proteins are mutually dependent on each other for correct localization. Finally, we show that Plk1 activity is essential for cleavage furrow formation and ingression, leading to successful cytokinesis.


Assuntos
Compostos de Anilina/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Tiazolidinas/farmacologia , Anáfase/efeitos dos fármacos , Compostos de Anilina/química , Animais , Linhagem Celular Tumoral , Centrossomo/efeitos dos fármacos , Centrossomo/enzimologia , Cromátides/efeitos dos fármacos , Cromátides/enzimologia , Citocinese/efeitos dos fármacos , DNA Helicases , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Índice Mitótico , Inibidores de Proteínas Quinases/química , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/enzimologia , Tiazolidinas/química , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA