Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Surg Res ; 300: 133-140, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38810526

RESUMO

INTRODUCTION: The use of survey methodology in surgical research has proliferated in recent years, but the quality of these surveys and of their reporting is understudied. METHODS: We conducted a comprehensive review of surgical survey literature (January 2022-July 2023) via PubMed in July 2023. Articles which (1) reported data gleaned from a survey, (2) were published in an English language journal, (3) targeted survey respondents in the United States or Canada, and (4) pertained to general surgery specialties were included. We assessed quality of survey reports using the Checklist for Reporting Of Survey Studies (CROSS) guidelines. Articles were evaluated for concordance with CROSS using a dichotomous (yes or no) scale. RESULTS: Initial literature search yielded 481 articles; 57 articles were included in analysis based on the inclusion criteria. The mean response rate was 37% (range 0.62%-98%). The majority of surveys were administered electronically (n = 50, 87.8%). No publications adhered to all 40 CROSS items; on average, publications met 61.2% of items applicable to that study. Articles were most likely to adhere to reporting criteria for title and abstract (mean adherence 99.1%), introduction (99.1%), and discussion (92.4%). Articles were least adherent to items related to methodology (42.6%) and moderately adherent to items related to results (76.6%). Only five articles cited CROSS guidelines or another standardized survey reporting tool (10.5%). CONCLUSIONS: Our analysis demonstrates that CROSS reporting guidelines for survey research have not been adopted widely. Surveys reported in surgical literature may be of variable quality. Increased adherence to guidelines could improve development and dissemination of surveys done by surgeons.

2.
J Vasc Res ; 58(4): 207-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839725

RESUMO

The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA's globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique "fingerprint" or "biomarker" vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.


Assuntos
Proteínas Angiogênicas/metabolismo , Artérias/anatomia & histologia , Artérias/metabolismo , Modelos Anatômicos , Modelos Cardiovasculares , Neovascularização Fisiológica , Transdução de Sinais , Remodelação Vascular , Proteínas Angiogênicas/genética , Animais , Astronautas , Bioimpressão , Simulação por Computador , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Fractais , Regulação da Expressão Gênica , Humanos , Neovascularização Patológica , Neovascularização Fisiológica/genética , Impressão Tridimensional , Oclusão da Veia Retiniana/metabolismo , Oclusão da Veia Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais/genética , Software , Remodelação Vascular/genética , Ausência de Peso
3.
Nat Chem Biol ; 17(8): 856-864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33927411

RESUMO

Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of NRAS-mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for NRAS-mutant cancers.


Assuntos
Membrana Celular/metabolismo , Hidrolases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Proteínas ras/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/patologia , Lipoilação , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular
4.
Blood ; 135(20): 1772-1782, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32219446

RESUMO

Oncogenic RAS mutations pose substantial challenges for rational drug discovery. Sequence variations within the hypervariable region of Ras isoforms underlie differential posttranslational modification and subcellular trafficking, potentially resulting in selective vulnerabilities. Specifically, inhibiting the palmitoylation/depalmitoylation cycle is an appealing strategy for treating NRAS mutant cancers, particularly as normal tissues would retain K-Ras4b function for physiologic signaling. The role of endogenous N-RasG12D palmitoylation in signal transduction, hematopoietic differentiation, and myeloid transformation is unknown, and addressing these key questions will inform efforts to develop mechanism-based therapies. To evaluate the palmitoylation/depalmitoylation cycle as a candidate drug target in an in vivo disease-relevant model system, we introduced a C181S mutation into a conditional NrasG12D "knock-in" allele. The C181S second-site amino acid substitution abrogated myeloid transformation by NrasG12D, which was associated with mislocalization of the nonpalmitoylated N-Ras mutant protein, reduced Raf/MEK/ERK signaling, and alterations in hematopoietic stem and progenitor populations. Furthermore, hematologic malignancies arising in NrasG12D/G12D,C181S compound heterozygous mice invariably acquired revertant mutations that restored cysteine 181. Together, these studies validate the palmitoylation cycle as a promising therapeutic target in NRAS mutant cancers.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Hematológicas/genética , Hematopoese/genética , Lipoilação/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Ácido Aspártico/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Glicina/genética , Neoplasias Hematológicas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Ácido Palmítico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA