Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(1): e0208958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30601836

RESUMO

Hepatic fibrosis develops from a series of complex interactions among resident and recruited cells making it a challenge to replicate using standard in vitro approaches. While studies have demonstrated the importance of macrophages in fibrogenesis, the role of Kupffer cells (KCs) in modulating the initial response remains elusive. Previous work demonstrated utility of 3D bioprinted liver to recapitulate basic fibrogenic features following treatment with fibrosis-associated agents. In the present study, culture conditions were modified to recapitulate a gradual accumulation of collagen within the tissues over an extended exposure timeframe. Under these conditions, KCs were added to the model to examine their impact on the injury/fibrogenic response following cytokine and drug stimuli. A 28-day exposure to 10 ng/mL TGF-ß1 and 0.209 µM methotrexate (MTX) resulted in sustained LDH release which was attenuated when KCs were incorporated in the model. Assessment of miR-122 confirmed early hepatocyte injury in response to TGF-ß1 that appeared delayed in the presence of KCs, whereas MTX-induced increases in miR-122 were observed when KCs were incorporated in the model. Although the collagen responses were mild under the conditions tested to mimic early fibrotic injury, a global reduction in cytokines was observed in the KC-modified tissue model following treatment. Furthermore, gene expression profiling suggests KCs have a significant impact on baseline tissue function over time and an important modulatory role dependent on the context of injury. Although the number of differentially expressed genes across treatments was comparable, pathway enrichment suggests distinct, KC- and time-dependent changes in the transcriptome for each agent. As such, the incorporation of KCs and impact on baseline tissue homeostasis may be important in recapitulating temporal dynamics of the fibrogenic response to different agents.


Assuntos
Células de Kupffer/metabolismo , Fígado/metabolismo , Metotrexato/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células de Kupffer/efeitos dos fármacos , Fígado/efeitos dos fármacos , Cirrose Hepática/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
2.
Cell Rep ; 26(3): 608-623.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650355

RESUMO

The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting could improve in vitro models by incorporating multiple cell types into scaffold-free tumor tissues with defined architecture. We generated tumor tissues from distinct subtypes of breast or pancreatic cancer in relevant microenvironments and demonstrate that this technique can model patient-specific tumors by using primary patient tissue. We assess intrinsic, extrinsic, and spatial tumorigenic phenotypes in bioprinted tissues and find that cellular proliferation, extracellular matrix deposition, and cellular migration are altered in response to extrinsic signals or therapies. Together, this work demonstrates that multi-cell-type bioprinted tissues can recapitulate aspects of in vivo neoplastic tissues and provide a manipulable system for the interrogation of multiple tumorigenic endpoints in the context of distinct tumor microenvironments.


Assuntos
Bioimpressão/métodos , Humanos , Fenótipo , Microambiente Tumoral
3.
Tissue Eng Part C Methods ; 17(3): 261-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20846053

RESUMO

Chronic kidney disease (CKD) is a global health problem; the growing gap between the number of patients awaiting transplant and organs actually transplanted highlights the need for new treatments to restore renal function. Regenerative medicine is a promising approach from which treatments for organ-level disorders (e.g., neurogenic bladder) have emerged and translated to clinics. Regenerative templates, composed of biodegradable material and autologous cells, isolated and expanded ex vivo, stimulate native-like organ tissue regeneration after implantation. A critical step for extending this strategy from bladder to kidney is the ability to isolate, characterize, and expand functional renal cells with therapeutic potential from diseased tissue. In this study, we developed methods that yield distinct subpopulations of primary kidney cells that are compatible with process development and scale-up. These methods were translated to rodent, large mammal, and human kidneys, and then to rodent and human tissues with advanced CKD. Comparative in vitro studies demonstrated that phenotype and key functional attributes were retained consistently in ex vivo cultures regardless of species or disease state, suggesting that autologous sourcing of cells that contribute to in situ kidney regeneration after injury is feasible, even with biopsies from patients with advanced CKD.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Falência Renal Crônica/patologia , Rim/citologia , Rim/patologia , Adolescente , Adulto , Animais , Biópsia , Proliferação de Células , Células Cultivadas , Cães , Eritropoetina/metabolismo , Feminino , Humanos , Lactente , Rim/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , Reprodutibilidade dos Testes
4.
Semin Cell Dev Biol ; 13(5): 369-76, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12324219

RESUMO

In recent years the concept of a stem cell has evolved to encompass the hypotheses that stem cells exist within many adult tissues, and that a common 'interchangeable' progenitor cell may exist within the bone marrow capable of regenerating and repairing tissues throughout the body. As more knowledge is gained about stem cells, their potential roles in disease processes, including the development and progression of cancer, have moved to the forefront. The underlying hypothesis of this review is that cell fate is determined by a combination of intrinsic and extrinsic factors; growth and differentiation are regulated through intracellular integration of a multitude of signals initiated by internal and external stimuli. The development of successful stem cell based therapies may depend on experimental approaches that consider both the intrinsic and extrinsic factors that control cell fate.


Assuntos
Neoplasias/patologia , Regeneração/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Fatores Etários , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA