Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440878

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive regression and memory loss. Dysfunctions of both glucose metabolism and mitochondrial dynamics have been recognized as the main upstream events of the degenerative processes leading to AD. It has been recently found that correcting cell metabolism by providing alternative substrates can prevent neuronal injury by retaining mitochondrial function and reducing AD marker levels. Here, we induced an AD-like phenotype by using the glycolysis inhibitor glyceraldehyde (GA) and explored whether L-carnitine (4-N-trimethylamino-3-hydroxybutyric acid, LC) could mitigate neuronal damage, both in SH-SY5Y neuroblastoma cells and in rat primary cortical neurons. We have already reported that GA significantly modified AD marker levels; here we demonstrated that GA dramatically compromised cellular bioenergetic status, as revealed by glycolysis and oxygen consumption rate (OCR) evaluation. We found that LC ameliorated cell survival, improved OCR and ATP synthesis, prevented the loss of the mitochondrial membrane potential (Δψm) and reduced the formation of reactive oxygen species (ROS). Of note, the beneficial effect of LC did not rely on the glycolytic pathway rescue. Finally, we noticed that LC significantly reduced the increase in pTau levels induced by GA. Overall, these findings suggest that the use of LC can promote cell survival in the setting of the metabolic impairments commonly observed in AD. Our data suggest that LC may act by maintaining mitochondrial function and by reducing the pTau level.


Assuntos
Doença de Alzheimer/metabolismo , Carnitina/farmacologia , Gliceraldeído/toxicidade , Fármacos Neuroprotetores/farmacologia , Trifosfato de Adenosina/biossíntese , Doença de Alzheimer/induzido quimicamente , Animais , Sobrevivência Celular/efeitos dos fármacos , Glicólise , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas tau/metabolismo
2.
Cells ; 9(9)2020 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899900

RESUMO

Increasing evidence suggests that metabolic alterations may be etiologically linked to neurodegenerative disorders such as Parkinson's disease (PD) and in particular empathizes the possibility of targeting mitochondrial dysfunctions to improve PD progression. Under different pathological conditions (i.e., cardiac and neuronal ischemia/reperfusion injury), we showed that supplementation of energetic substrates like glutamate exerts a protective role by preserving mitochondrial functions and enhancing ATP synthesis through a mechanism involving the Na+-dependent excitatory amino acid transporters (EAATs) and the Na+/Ca2+ exchanger (NCX). In this study, we investigated whether a similar approach aimed at promoting glutamate metabolism would be also beneficial against cell damage in an in vitro PD-like model. In retinoic acid (RA)-differentiated SH-SY5Y cells challenged with α-synuclein (α-syn) plus rotenone (Rot), glutamate significantly improved cell viability by increasing ATP levels, reducing oxidative damage and cytosolic and mitochondrial Ca2+ overload. Glutamate benefits were strikingly lost when either EAAT3 or NCX1 expression was knocked down by RNA silencing. Overall, our results open the possibility of targeting EAAT3/NCX1 functions to limit PD pathology by simultaneously favoring glutamate uptake and metabolic use in dopaminergic neurons.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Doença de Parkinson/genética , Trocador de Sódio e Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Neuroproteção , Doença de Parkinson/metabolismo , Transfecção
3.
Cell Calcium ; 87: 102169, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32070925

RESUMO

Cell membranes spatially define gradients that drive the complexity of biological signals. To guarantee movements and exchanges of solutes between compartments, membrane transporters negotiate the passages of ions and other important molecules through lipid bilayers. The Na+/Ca2+ exchangers (NCXs) in particular play central roles in balancing Na+ and Ca2+ fluxes across diverse proteolipid borders in all eukaryotic cells, influencing cellular functions and fate by multiple means. To prevent progression from balance to disease, redundant regulatory mechanisms cooperate at multiple levels (transcriptional, translational, and post-translational) and guarantee that the activities of NCXs are finely-tuned to cell homeostatic requirements. When this regulatory network is disturbed by pathological forces, cells may approach the end of life. In this review, we will discuss the main findings, controversies and open questions about regulatory mechanisms that control NCX functions in health and disease.


Assuntos
Ativação do Canal Iônico , Trocador de Sódio e Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Modelos Biológicos
4.
Cell Calcium ; 86: 102160, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31962228

RESUMO

Energy metabolism impairment is a central event in the pathophysiology of ischemia. The limited availability of glucose and oxygen strongly affects mitochondrial activity, thus leading to ATP depletion. In this setting, the switch to alternative energy sources could ameliorate cells survival by enhancing ATP production, thus representing an attractive strategy for ischemic treatment. In this regard, some studies have recently re-evaluated the metabolic role of glutamate and its potential to promote cell survival under pathological conditions. In the present review, we discuss the ability of glutamate to exert an "energizing role" in cardiac and neuronal models of hypoxia/reoxygenation (H/R) injury, focusing on the Na+/Ca2+ exchanger (NCX) and the Na+-dependent excitatory amino acid transporters (EAATs) as key players in this metabolic pathway.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Sobrevivência Celular , Metabolismo Energético , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA