Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Brain Commun ; 6(2): fcae108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646145

RESUMO

In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.

2.
World Neurosurg ; 185: e800-e819, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432506

RESUMO

BACKGROUND: Surgical site infections after craniotomy (SSI-CRANs) are a serious adverse event given the proximity of the wound to the central nervous system. SSI-CRANs are associated with substantial patient morbidity and mortality. Despite the importance and recognition of this event in other surgical fields, there is a paucity of evidence in the neurosurgical literature devoted to SSI-CRAN specifically in patients after brain tumor surgery. METHODS: Systematic searches of Medline, Embase, and Cochrane Central were undertaken. The primary outcome was the incidence of SSI-CRAN at 30 and 90 days. Secondary outcomes were risk factors for SSI-CRAN. RESULTS: Thirty-seven studies reporting 91,907 patients with brain tumors who underwent cranial surgery were included in the meta-analysis. Pooled incidence of SSI-CRAN at 30 and 90 days was 4.03% (95% CI: 2.94%-5.28%, I2 = 97.3) and 6.17% (95% CI: 3.16%-10.07%, I2 = 97.3), respectively. Specifically, incidence of SSI-CRAN following surgery for posterior fossa tumors was the highest at 9.67% (95% CI: 5.98%-14.09%, I2 = 75.5). Overall pooled incidence of readmission within 30 days and reoperation due to SSI-CRAN were 13.9% (95% CI: 12.5%-15.5%, I2 = 0.0) and 16.3% (95% CI: 5.4%-31.3%, I2 = 72.9), respectively. Risk factors for SSI-CRAN included reintervention (risk ratio [RR] 1.58, 95% CI: 1.22-2.04, I2 = 0.0), previous radiotherapy (RR 1.69, 95% CI: 1.20-2.38, I2 = 0.0), longer duration of operation (mean difference 64.18, 95% CI: 3.96-124.40 minutes, I2 = 90.3) and cerebrospinal fluid (CSF) leaks (RR 14.26, 95% CI: 2.14-94.90, I2 = 73.2). CONCLUSIONS: SSI-CRAN affects up to 1 in 14 patients with brain tumors. High-risk groups include those with reintervention, previous radiotherapy, longer duration of operation, and CSF leaks. Further prospective studies should focus on bundles of care that will reduce SSI-CRAN.


Assuntos
Neoplasias Encefálicas , Craniotomia , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Neoplasias Encefálicas/cirurgia , Fatores de Risco , Incidência , Craniotomia/efeitos adversos , Procedimentos Neurocirúrgicos/efeitos adversos
3.
Sci Rep ; 14(1): 5646, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454017

RESUMO

Brain tumour microstructure is potentially predictive of changes following treatment to cognitive functions subserved by the functional networks in which they are embedded. To test this hypothesis, intra-tumoural microstructure was quantified from diffusion-weighted MRI to identify which tumour subregions (if any) had a greater impact on participants' cognitive recovery after surgical resection. Additionally, we studied the role of tumour microstructure in the functional interaction between the tumour and the rest of the brain. Sixteen patients (22-56 years, 7 females) with brain tumours located in or near speech-eloquent areas of the brain were included in the analyses. Two different approaches were adopted for tumour segmentation from a multishell diffusion MRI acquisition: the first used a two-dimensional four group partition of feature space, whilst the second used data-driven clustering with Gaussian mixture modelling. For each approach, we assessed the capability of tumour microstructure to predict participants' cognitive outcomes after surgery and the strength of association between the BOLD signal of individual tumour subregions and the global BOLD signal. With both methodologies, the volumes of partially overlapped subregions within the tumour significantly predicted cognitive decline in verbal skills after surgery. We also found that these particular subregions were among those that showed greater functional interaction with the unaffected cortex. Our results indicate that tumour microstructure measured by MRI multishell diffusion is associated with cognitive recovery after surgery.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Feminino , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Cognição , Imagem de Difusão por Ressonância Magnética/métodos , Córtex Cerebral/patologia , Encéfalo/patologia
4.
Cortex ; 173: 1-15, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38354669

RESUMO

The extent to which tumour-infiltrated brain tissue contributes to cognitive function remains unclear. We tested the hypothesis that cortical tissue infiltrated by diffuse gliomas participates in large-scale cognitive circuits using a unique combination of intracranial electrocorticography (ECoG) and resting-state functional magnetic resonance (fMRI) imaging in four patients. We also assessed the relationship between functional connectivity with tumour-infiltrated tissue and long-term cognitive outcomes in a larger, overlapping cohort of 17 patients. We observed significant task-related high gamma (70-250 Hz) power modulations in tumour-infiltrated cortex in response to increased cognitive effort (i.e., switch counting compared to simple counting), implying preserved functionality of neoplastic tissue for complex tasks probing executive function. We found that tumour locations corresponding to task-responsive electrodes exhibited functional connectivity patterns that significantly co-localised with canonical brain networks implicated in executive function. Specifically, we discovered that tumour-infiltrated cortex with larger task-related high gamma power modulations tended to be more functionally connected to the dorsal attention network (DAN). Finally, we demonstrated that tumour-DAN connectivity is evident across a larger cohort of patients with gliomas and that it relates to long-term postsurgical outcomes in goal-directed attention. Overall, this study contributes convergent fMRI-ECoG evidence that tumour-infiltrated cortex participates in large-scale neurocognitive circuits that support executive function in health. These findings underscore the potential clinical utility of mapping large-scale connectivity of tumour-infiltrated tissue in the care of patients with diffuse gliomas.


Assuntos
Encéfalo , Glioma , Humanos , Encéfalo/fisiologia , Função Executiva/fisiologia , Cognição/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Vias Neurais/fisiologia
5.
Neuro Oncol ; 25(7): 1299-1309, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37052643

RESUMO

BACKGROUND: This study assessed the international variation in surgical neuro-oncology practice and 30-day outcomes of patients who had surgery for an intracranial tumor during the COVID-19 pandemic. METHODS: We prospectively included adults aged ≥18 years who underwent surgery for a malignant or benign intracranial tumor across 55 international hospitals from 26 countries. Each participating hospital recorded cases for 3 consecutive months from the start of the pandemic. We categorized patients' location by World Bank income groups (high [HIC], upper-middle [UMIC], and low- and lower-middle [LLMIC]). Main outcomes were a change from routine management, SARS-CoV-2 infection, and 30-day mortality. We used a Bayesian multilevel logistic regression stratified by hospitals and adjusted for key confounders to estimate the association between income groups and mortality. RESULTS: Among 1016 patients, the number of patients in each income group was 765 (75.3%) in HIC, 142 (14.0%) in UMIC, and 109 (10.7%) in LLMIC. The management of 200 (19.8%) patients changed from usual care, most commonly delayed surgery. Within 30 days after surgery, 14 (1.4%) patients had a COVID-19 diagnosis and 39 (3.8%) patients died. In the multivariable model, LLMIC was associated with increased mortality (odds ratio 2.83, 95% credible interval 1.37-5.74) compared to HIC. CONCLUSIONS: The first wave of the pandemic had a significant impact on surgical decision-making. While the incidence of SARS-CoV-2 infection within 30 days after surgery was low, there was a disparity in mortality between countries and this warrants further examination to identify any modifiable factors.


Assuntos
Neoplasias Encefálicas , COVID-19 , Adulto , Humanos , Adolescente , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Estudos de Coortes , Estudos Prospectivos , Teorema de Bayes , Teste para COVID-19 , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/cirurgia
6.
J Pers Med ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36836511

RESUMO

Glioblastoma and the surgery to remove it pose high risks to the cognitive function of patients. Little reliable data exist about these risks, especially postoperatively before radiotherapy. We hypothesized that cognitive deficit risks detected before surgery will be exacerbated by surgery in patients with glioblastoma undergoing maximal treatment regimens. We used longitudinal electronic cognitive testing perioperatively to perform a prospective, longitudinal, observational study of 49 participants with glioblastoma undergoing surgery. Before surgery (A1), the participant risk of deficit in 5/6 cognitive domains was increased compared to normative data. Of these, the risks to Attention (OR = 31.19), Memory (OR = 97.38), and Perception (OR = 213.75) were markedly increased. These risks significantly increased in the early period after surgery (A2) when patients were discharged home or seen in the clinic to discuss histology results. For participants tested at 4-6 weeks after surgery (A3) before starting radiotherapy, there was evidence of risk reduction towards A1. The observed risks of cognitive deficit were independent of patient-specific, tumour-specific, and surgery-specific co-variates. These results reveal a timeframe of natural recovery in the first 4-6 weeks after surgery based on personalized deficit profiles for each participant. Future research in this period could investigate personalized rehabilitation tools to aid the recovery process found.

7.
Cortex ; 159: 286-298, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36645968

RESUMO

Though the lateral frontal cortex is broadly implicated in cognitive control, functional MRI (fMRI) studies suggest fine-grained distinctions within this region. To examine this question electrophysiologically, we placed electrodes on the lateral frontal cortex in patients undergoing awake craniotomy for tumor resection. Patients performed verbal tasks with a manipulation of attentional switching, a canonical control demand. Power in the high gamma range (70-250 Hz) distinguished electrodes based on their location within a high-resolution fMRI network parcellation of the frontal lobe. Electrodes within the canonical fronto-parietal control network showed increased power in the switching condition, a result absent in electrodes within default mode, language and somato-motor networks. High gamma results contrasted with spatially distributed power decreases in the beta range (12-30 Hz). These results confirm the importance of fine-scale functional distinctions within the human frontal lobe, and pave the way for increased precision of functional mapping in tumor surgeries.


Assuntos
Mapeamento Encefálico , Neoplasias , Humanos , Mapeamento Encefálico/métodos , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Vigília , Imageamento por Ressonância Magnética , Cognição/fisiologia
8.
Neuron ; 110(23): 3936-3951.e10, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36174572

RESUMO

Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNß) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNß treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Células Mieloides , Células-Tronco , Interferons
9.
Radiol Imaging Cancer ; 4(4): e210076, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35838532

RESUMO

Purpose To evaluate glioblastoma (GBM) metabolism by using hyperpolarized carbon 13 (13C) MRI to monitor the exchange of the hyperpolarized 13C label between injected [1-13C]pyruvate and tumor lactate and bicarbonate. Materials and Methods In this prospective study, seven treatment-naive patients (age [mean ± SD], 60 years ± 11; five men) with GBM were imaged at 3 T by using a dual-tuned 13C-hydrogen 1 head coil. Hyperpolarized [1-13C]pyruvate was injected, and signal was acquired by using a dynamic MRI spiral sequence. Metabolism was assessed within the tumor, in the normal-appearing brain parenchyma (NABP), and in healthy volunteers by using paired or unpaired t tests and a Wilcoxon signed rank test. The Spearman ρ correlation coefficient was used to correlate metabolite labeling with lactate dehydrogenase A (LDH-A) expression and some immunohistochemical markers. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results The bicarbonate-to-pyruvate (BP) ratio was lower in the tumor than in the contralateral NABP (P < .01). The tumor lactate-to-pyruvate (LP) ratio was not different from that in the NABP (P = .38). The LP and BP ratios in the NABP were higher than those observed previously in healthy volunteers (P < .05). Tumor lactate and bicarbonate signal intensities were strongly correlated with the pyruvate signal intensity (ρ = 0.92, P < .001, and ρ = 0.66, P < .001, respectively), and the LP ratio was weakly correlated with LDH-A expression in biopsy samples (ρ = 0.43, P = .04). Conclusion Hyperpolarized 13C MRI demonstrated variation in lactate labeling in GBM, both within and between tumors. In contrast, bicarbonate labeling was consistently lower in tumors than in the surrounding NABP. Keywords: Hyperpolarized 13C MRI, Glioblastoma, Metabolism, Cancer, MRI, Neuro-oncology Supplemental material is available for this article. Published under a CC BY 4.0 license.


Assuntos
Glioblastoma , Bicarbonatos , Glioblastoma/diagnóstico por imagem , Humanos , Lactato Desidrogenase 5 , Ácido Láctico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ácido Pirúvico/metabolismo
10.
Acta Neurochir (Wien) ; 164(8): 2021-2034, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35230551

RESUMO

BACKGROUND: Gliomas are typically considered to cause relatively few neurological impairments. However, cognitive difficulties can arise, for example during treatment, with potential detrimental effects on quality of life. Accurate, reproducible, and accessible cognitive assessment is therefore vital in understanding the effects of both tumor and treatments. Our aim is to compare traditional neuropsychological assessment with an app-based cognitive screening tool in patients with glioma before and after surgical resection. Our hypotheses were that cognitive impairments would be apparent, even in a young and high functioning cohort, and that app-based cognitive screening would complement traditional neuropsychological assessment. METHODS: Seventeen patients with diffuse gliomas completed a traditional neuropsychological assessment and an app-based touchscreen tablet assessment pre- and post-operatively. The app assessment was also conducted at 3- and 12-month follow-up. Impairment rates, mean performance, and pre- and post-operative changes were compared using standardized Z-scores. RESULTS: Approximately 2-3 h of traditional assessment indicated an average of 2.88 cognitive impairments per patient, while the 30-min screen indicated 1.18. As might be expected, traditional assessment using multiple items across the difficulty range proved more sensitive than brief screening measures in areas such as memory and attention. However, the capacity of the screening app to capture reaction times enhanced its sensitivity, relative to traditional assessment, in the area of non-verbal function. Where there was overlap between the two assessments, for example digit span tasks, the results were broadly equivalent. CONCLUSIONS: Cognitive impairments were common in this sample and app-based screening complemented traditional neuropsychological assessment. Implications for clinical assessment and follow-up are discussed.


Assuntos
Neoplasias Encefálicas , Transtornos Cognitivos , Glioma , Aplicativos Móveis , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Cognição , Transtornos Cognitivos/etiologia , Glioma/complicações , Glioma/diagnóstico , Glioma/cirurgia , Humanos , Testes Neuropsicológicos , Qualidade de Vida
11.
Br J Neurosurg ; 36(6): 770-776, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35200077

RESUMO

BACKGROUND: Tumour Treating Fields (TTF) in combination with standard therapy, prolongs survival in patients with glioblastoma (GBM). The aim of the current study was to assess the feasibility of integrating TTF into a standard UK neuro-oncology service with a focus on patient tolerability, compliance, and treatment delivery. METHODS: A prospective study was performed of UK patients with IDH 1 Wild Type, MGMT Unmethylated GBM treated with TTF, in conjunction with conventional therapy. Patient compliance data, device-specific tolerability questions, and an evaluation of disease progression and survival were collected. Monthly quality of life (QoL) questionnaires (EORTC QLQ-C30 with BN-20) examined the trend of global health, psychosocial function, and symptom progression. RESULTS: Nine patients were enrolled with a median age of 47 (seven males; two females). Overall, compliance with TTF was 89% (range 16-97%). Only one patient failed to comply with treatment. Patients tolerated the device with minimal side effects. Eight patients described mild to moderate skin irritation, whilst all patients were keen to recommend the device to other patients (100%). Most patients found the weight and size of the device to be its biggest drawback (72%). Progression-free survival was 5.5 months and median overall survival was 14.9 months. CONCLUSIONS: TTF was well-tolerated amongst a small cohort of UK patients, who were able to comply with treatment without any significant complication. QoL questionnaires showed no sustained deterioration in global health, physical and emotional function until the final months of life when the disease burden was greatest.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Masculino , Feminino , Humanos , Glioblastoma/terapia , Glioblastoma/patologia , Qualidade de Vida , Estudos Prospectivos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Reino Unido
12.
J Neurosurg ; 136(2): 358-368, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34359041

RESUMO

OBJECTIVE: The aim of this study was to test brain tumor interactions with brain networks, thereby identifying protective features and risk factors for memory recovery after resection. METHODS: Seventeen patients with diffuse nonenhancing glioma (ages 22-56 years) underwent longitudinal MRI before and after surgery, and during a 12-month recovery period (47 MRI scans in total after exclusion). After each scanning session, a battery of memory tests was performed using a tablet-based screening tool, including free verbal memory, overall verbal memory, episodic memory, orientation, forward digit span, and backward digit span. Using structural MRI and neurite orientation dispersion and density imaging (NODDI) derived from diffusion-weighted images, the authors estimated lesion overlap and neurite density, respectively, with brain networks derived from normative data in healthy participants (somatomotor, dorsal attention, ventral attention, frontoparietal, and default mode network [DMN]). Linear mixed-effect models (LMMs) that regressed out the effect of age, gender, tumor grade, type of treatment, total lesion volume, and total neurite density were used to test the potential longitudinal associations between imaging markers and memory recovery. RESULTS: Memory recovery was not significantly associated with either the tumor location based on traditional lobe classification or the type of treatment received by patients (i.e., surgery alone or surgery with adjuvant chemoradiotherapy). Nonlocal effects of tumors were evident on neurite density, which was reduced not only within the tumor but also beyond the tumor boundary. In contrast, high preoperative neurite density outside the tumor but within the DMN was associated with better memory recovery (LMM, p value after false discovery rate correction [Pfdr] < 10-3). Furthermore, postoperative and follow-up neurite density within the DMN and frontoparietal network were also associated with memory recovery (LMM, Pfdr = 0.014 and Pfdr = 0.001, respectively). Preoperative tumor and postoperative lesion overlap with the DMN showed a significant negative association with memory recovery (LMM, Pfdr = 0.002 and Pfdr < 10-4, respectively). CONCLUSIONS: Imaging biomarkers of cognitive recovery and decline can be identified using NODDI and resting-state networks. Brain tumors and their corresponding treatment affecting brain networks that are fundamental for memory functioning such as the DMN can have a major impact on patients' memory recovery.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Encéfalo , Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Cognição , Rede de Modo Padrão , Glioma/diagnóstico por imagem , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neuritos , Adulto Jovem
13.
Cancers (Basel) ; 13(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34638493

RESUMO

Predicting functional outcomes after surgery and early adjuvant treatment is difficult due to the complex, extended, interlocking brain networks that underpin cognition. The aim of this study was to test glioma functional interactions with the rest of the brain, thereby identifying the risk factors of cognitive recovery or deterioration. Seventeen patients with diffuse non-enhancing glioma (aged 22-56 years) were longitudinally MRI scanned and cognitively assessed before and after surgery and during a 12-month recovery period (55 MRI scans in total after exclusions). We initially found, and then replicated in an independent dataset, that the spatial correlation pattern between regional and global BOLD signals (also known as global signal topography) was associated with tumour occurrence. We then estimated the coupling between the BOLD signal from within the tumour and the signal extracted from different brain tissues. We observed that the normative global signal topography is reorganised in glioma patients during the recovery period. Moreover, we found that the BOLD signal within the tumour and lesioned brain was coupled with the global signal and that this coupling was associated with cognitive recovery. Nevertheless, patients did not show any apparent disruption of functional connectivity within canonical functional networks. Understanding how tumour infiltration and coupling are related to patients' recovery represents a major step forward in prognostic development.

14.
Cancers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209555

RESUMO

Background Glioblastoma (GBM) is the commonest primary malignant brain tumour in adults and effective treatment options are limited. Combining local chemotherapy with enhanced surgical resection using 5-aminolevulinic acid (5-ALA) could improve outcomes. Here we assess the safety and feasibility of combining BCNU wafers with 5-ALA-guided surgery. Methods We conducted a multicentre feasibility study of 5-ALA with BCNU wafers followed by standard-of-care chemoradiotherapy (chemoRT) in patients with suspected GBM. Patients judged suitable for radical resection were administered 5-ALA pre-operatively and BCNU wafers at the end resection. Post-operative treatment continued as per routine clinical practice. The primary objective was to establish if combining 5-ALA and BCNU wafers is safe without compromising patients from receiving standard chemoRT. Results Seventy-two patients were recruited, sixty-four (88.9%) received BCNU wafer implants, and fifty-nine (81.9%) patients remained eligible following formal histological diagnosis. Seven (11.9%) eligible patients suffered surgical complications but only two (3.4%) were not able to begin chemoRT, four (6.8%) additional patients did not begin chemoRT within 6 weeks of surgery due to surgical complications. Eleven (18.6%) patients did not begin chemoRT for other reasons (other toxicity (n = 3), death (n = 3), lost to follow-up/withdrew (n = 3), clinical decision (n = 1), poor performance status (n = 1)). Median progression-free survival was 8.7 months (95% CI: 6.4-9.8) and median overall survival was 14.7 months (95% CI: 11.7-16.8). Conclusions Combining BCNU wafers with 5-ALA-guided surgery in newly diagnosed GBM patients is both feasible and tolerable in terms of surgical morbidity and overall toxicity. Any potential therapeutic benefit for the sequential use of 5-ALA and BCNU with chemoRT requires further investigation with improved local delivery technologies.

15.
Neurooncol Adv ; 3(1): vdab014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056602

RESUMO

BACKGROUND: The COVID-19 pandemic has profoundly affected cancer services. Our objective was to determine the effect of the COVID-19 pandemic on decision making and the resulting outcomes for patients with newly diagnosed or recurrent intracranial tumors. METHODS: We performed a multicenter prospective study of all adult patients discussed in weekly neuro-oncology and skull base multidisciplinary team meetings who had a newly diagnosed or recurrent intracranial (excluding pituitary) tumor between 01 April and 31 May 2020. All patients had at least 30-day follow-up data. Descriptive statistical reporting was used. RESULTS: There were 1357 referrals for newly diagnosed or recurrent intracranial tumors across 15 neuro-oncology centers. Of centers with all intracranial tumors, a change in initial management was reported in 8.6% of cases (n = 104/1210). Decisions to change the management plan reduced over time from a peak of 19% referrals at the start of the study to 0% by the end of the study period. Changes in management were reported in 16% (n = 75/466) of cases previously recommended for surgery and 28% of cases previously recommended for chemotherapy (n = 20/72). The reported SARS-CoV-2 infection rate was similar in surgical and non-surgical patients (2.6% vs. 2.4%, P > .9). CONCLUSIONS: Disruption to neuro-oncology services in the UK caused by the COVID-19 pandemic was most marked in the first month, affecting all diagnoses. Patients considered for chemotherapy were most affected. In those recommended surgical treatment this was successfully completed. Longer-term outcome data will evaluate oncological treatments received by these patients and overall survival.

16.
Acta Neurochir (Wien) ; 163(5): 1299-1309, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33222010

RESUMO

BACKGROUND: Intraoperative functional mapping with direct electrical stimulation during awake surgery for patients with diffuse low-grade glioma has been used in recent years to optimize the balance between surgical resection and quality of life following surgery. Mapping of executive functions is particularly challenging because of their complex nature, with only a handful of reports published so far. Here, we propose the recording of neural activity directly from the surface of the brain using electrocorticography to map executive functions and demonstrate its feasibility and potential utility. METHODS: To track a neural signature of executive function, we recorded neural activity using electrocorticography during awake surgery from the frontal cortex of three patients judged to have an appearance of diffuse low-grade glioma. Based on existing functional magnetic resonance imaging (fMRI) evidence from healthy participants for the recruitment of areas associated with executive function with increased task demands, we employed a task difficulty manipulation in two counting tasks performed intraoperatively. Following surgery, the data were extracted and analyzed offline to identify increases in broadband high-gamma power with increased task difficulty, equivalent to fMRI findings, as a signature of activity related to executive function. RESULTS: All three patients performed the tasks well. Data were recorded from five electrode strips, resulting in data from 15 channels overall. Eleven out of the 15 channels (73.3%) showed significant increases in high-gamma power with increased task difficulty, 26.6% of the channels (4/15) showed no change in power, and none of the channels showed power decrease. High-gamma power increases with increased task difficulty were more likely in areas that are within the canonical frontoparietal network template. CONCLUSIONS: These results are the first step toward developing electrocorticography as a tool for mapping of executive function complementarily to direct electrical stimulation to guide resection. Further studies are required to establish this approach for clinical use.


Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/cirurgia , Eletrocorticografia , Função Executiva , Glioma/fisiopatologia , Glioma/cirurgia , Cuidados Intraoperatórios , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Cognição/fisiologia , Estimulação Elétrica , Feminino , Ritmo Gama/fisiologia , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
17.
Sci Rep ; 10(1): 13808, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782416

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Acta Neurochir (Wien) ; 162(12): 3067-3080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662042

RESUMO

BACKGROUND: Measurement of volumetric features is challenging in glioblastoma. We investigate whether volumetric features derived from preoperative MRI using a convolutional neural network-assisted segmentation is correlated with survival. METHODS: Preoperative MRI of 120 patients were scored using Visually Accessible Rembrandt Images (VASARI) features. We trained and tested a multilayer, multi-scale convolutional neural network on multimodal brain tumour segmentation challenge (BRATS) data, prior to testing on our dataset. The automated labels were manually edited to generate ground truth segmentations. Network performance for our data and BRATS data was compared. Multivariable Cox regression analysis corrected for multiple testing using the false discovery rate was performed to correlate clinical and imaging variables with overall survival. RESULTS: Median Dice coefficients in our sample were (1) whole tumour 0.94 (IQR, 0.82-0.98) compared to 0.91 (IQR, 0.83-0.94 p = 0.012), (2) FLAIR region 0.84 (IQR, 0.63-0.95) compared to 0.81 (IQR, 0.69-0.8 p = 0.170), (3) contrast-enhancing region 0.91 (IQR, 0.74-0.98) compared to 0.83 (IQR, 0.78-0.89 p = 0.003) and (4) necrosis region were 0.82 (IQR, 0.47-0.97) compared to 0.67 (IQR, 0.42-0.81 p = 0.005). Contrast-enhancing region/tumour core ratio (HR 4.73 [95% CI, 1.67-13.40], corrected p = 0.017) and necrotic core/tumour core ratio (HR 8.13 [95% CI, 2.06-32.12], corrected p = 0.011) were independently associated with overall survival. CONCLUSION: Semi-automated segmentation of glioblastoma using a convolutional neural network trained on independent data is robust when applied to routine clinical data. The segmented volumes have prognostic significance.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Aprendizado Profundo , Glioblastoma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Idoso , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Resultado do Tratamento
19.
Comput Biol Med ; 123: 103815, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32658776

RESUMO

Glioblastoma (GBM) is the commonest primary malignant brain tumor in adults, and despite advances in multi-modality therapy, the outlook for patients has changed little in the last 10 years. Local recurrence is the predominant pattern of treatment failure, hence improved local therapies (surgery and radiotherapy) are needed to improve patient outcomes. Currently segmentation of GBM for surgery or radiotherapy (RT) planning is labor intensive, especially for high-dimensional MR imaging methods that may provide more sensitive indicators of tumor phenotype. Automating processing and segmentation of these images will aid treatment planning. Diffusion tensor magnetic resonance imaging is a recently developed technique (DTI) that is exquisitely sensitive to the ordered diffusion of water in white matter tracts. Our group has shown that decomposition of the tensor information into the isotropic component (p - shown to represent tumor invasion) and the anisotropic component (q - shown to represent the tumor bulk) can provide valuable prognostic information regarding tumor infiltration and patient survival. However, tensor decomposition of DTI data is not commonly used for neurosurgery or radiotherapy treatment planning due to difficulties in segmenting the resultant image maps. For this reason, automated techniques for segmentation of tensor decomposition maps would have significant clinical utility. In this paper, we modified a well-established convolutional neural network architecture (CNN) for medical image segmentation and used it as an automatic multi-sequence GBM segmentation based on both DTI image maps (p and q maps) and conventional MRI sequences (T2-FLAIR and T1 weighted post contrast (T1c)). In this proof-of-concept work, we have used multiple MRI sequences, each with individually defined ground truths for better understanding of the contribution of each image sequence to the segmentation performance. The high accuracy and efficiency of our proposed model demonstrates the potential of utilizing diffusion MR images for target definition in precision radiation treatment planning and surgery in routine clinical practice.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Imagem de Tensor de Difusão , Glioblastoma/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação
20.
Sci Rep ; 10(1): 9748, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546790

RESUMO

The challenge in the treatment of glioblastoma is the failure to identify the cancer invasive area outside the contrast-enhancing tumour which leads to the high local progression rate. Our study aims to identify its progression from the preoperative MR radiomics. 57 newly diagnosed cerebral glioblastoma patients were included. All patients received 5-aminolevulinic acid (5-ALA) fluorescence guidance surgery and postoperative temozolomide concomitant chemoradiotherapy. Preoperative 3 T MRI data including structure MR, perfusion MR, and DTI were obtained. Voxel-based radiomics features extracted from 37 patients were used in the convolutional neural network to train and as internal validation. Another 20 patients of the cohort were tested blindly as external validation. Our results showed that the peritumoural progression areas had higher signal intensity in FLAIR (p = 0.02), rCBV (p = 0.038), and T1C (p = 0.0004), and lower intensity in ADC (p = 0.029) and DTI-p (p = 0.001) compared to non-progression area. The identification of the peritumoural progression area was done by using a supervised convolutional neural network. There was an overall accuracy of 92.6% in the training set and 78.5% in the validation set. Multimodal MR radiomics can demonstrate distinct characteristics in areas of potential progression on preoperative MRI.


Assuntos
Glioblastoma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Ácido Aminolevulínico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Estudos de Coortes , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Progressão da Doença , Feminino , Glioblastoma/patologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Imagem Óptica/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA