Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Neuron ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38897209

RESUMO

Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.

2.
Elife ; 122024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775664

RESUMO

Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.


Assuntos
Macrófagos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Macrófagos/imunologia , Camundongos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Isquemia Miocárdica/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/imunologia , Masculino , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miocárdio/imunologia , Modelos Animais de Doenças
3.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309258

RESUMO

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Assuntos
Encéfalo , Microglia , Axônios , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Macrófagos/fisiologia , Microglia/patologia , Morfogênese
4.
Sci Immunol ; 8(89): eadd4374, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922341

RESUMO

The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Xerostomia , Humanos , Macrófagos , Qualidade de Vida , Glândulas Salivares , Xerostomia/terapia
5.
Nat Cell Biol ; 25(12): 1848-1859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957324

RESUMO

Breast cancer brain metastasis (BCBM) is a lethal disease with no effective treatments. Prior work has shown that brain cancers and metastases are densely infiltrated with anti-inflammatory, protumourigenic tumour-associated macrophages, but the role of brain-resident microglia remains controversial because they are challenging to discriminate from other tumour-associated macrophages. Using single-cell RNA sequencing, genetic and humanized mouse models, we specifically identify microglia and find that they play a distinct pro-inflammatory and tumour-suppressive role in BCBM. Animals lacking microglia show increased metastasis, decreased survival and reduced natural killer and T cell responses, showing that microglia are critical to promote anti-tumour immunity to suppress BCBM. We find that the pro-inflammatory response is conserved in human microglia, and markers of their response are associated with better prognosis in patients with BCBM. These findings establish an important role for microglia in anti-tumour immunity and highlight them as a potential immunotherapy target for brain metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Microglia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Resultado do Tratamento
6.
Nat Immunol ; 23(6): 927-939, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624205

RESUMO

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Hipóxia/etiologia , Inflamação/complicações , Pulmão , Lesão Pulmonar/complicações , Camundongos
7.
Immunology ; 166(4): 458-474, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35437746

RESUMO

The relationship between macrophages of the peritoneal cavity and the adjacent omentum remains poorly understood. Here, we describe two populations of omental macrophages distinguished by CD102 expression and use an adoptive cell transfer approach to investigate whether these arise from peritoneal macrophages, and whether this depends upon inflammatory status, the origin of peritoneal macrophages and availability of the omental niches. We show that whereas established resident peritoneal macrophages largely fail to migrate to the omentum, monocyte-derived resident cells readily migrate and form a substantial component of omental CD102+ macrophages in the months following resolution of peritoneal inflammation. In contrast, both populations had the capacity to migrate to the omentum in the absence of endogenous peritoneal and omental macrophages. However, inflammatory macrophages expanded more effectively and more efficiently repopulated both CD102+ and CD102- omental populations, whereas established resident macrophages partially reconstituted the omental niche via recruitment of monocytes. Hence, cell origin determines the migration of peritoneal macrophages to the omentum and predisposes established resident macrophages to drive infiltration of monocyte-derived cells.


Assuntos
Macrófagos Peritoneais , Omento , Macrófagos , Omento/metabolismo , Cavidade Peritoneal
8.
PLoS Genet ; 17(6): e1009605, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081701

RESUMO

Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.


Assuntos
Fígado Gorduroso/genética , Macrófagos/metabolismo , Anormalidades Musculoesqueléticas/genética , Desenvolvimento Musculoesquelético/genética , Osteopetrose/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Modelos Animais de Doenças , Embrião de Mamíferos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/terapia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Anormalidades Musculoesqueléticas/terapia , Osteopetrose/metabolismo , Osteopetrose/patologia , Osteopetrose/terapia , Ratos , Ratos Transgênicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência
9.
Br J Haematol ; 193(5): 946-950, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951750

RESUMO

Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 has recently been identified as a critical tumour checkpoint, augmenting the expression and function of programmed death-ligand 1. We raised a monoclonal antibody, A9E8, specific for Siglec-15 using phage display. A9E8 stained myeloid leukaemia cell lines and peripheral cluster of differentiation (CD)33+ blasts and CD34+ leukaemia stem cells from patients with acute myeloid leukaemia (AML). By contrast, there was minimal expression on healthy donor leucocytes or CD34+ stem cells from non-AML donors, suggesting targeting Siglec-15 may have significant therapeutic advantages over its fellow Siglec CD33. After binding, A9E8 was rapidly internalised (half-life of 180 s) into K562 cells. Antibodies to Siglec-15 therefore hold therapeutic potential for AML treatment.


Assuntos
Antígenos de Neoplasias/metabolismo , Imunoglobulinas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antígenos CD34/metabolismo , Feminino , Humanos , Células K562 , Masculino
10.
Development ; 147(23)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323375

RESUMO

The central nervous system hosts parenchymal macrophages, known as microglia, and non-parenchymal macrophages, collectively termed border-associated macrophages (BAMs). Microglia, but not BAMs, were reported to be absent in mice lacking a conserved Csf1r enhancer: the fms-intronic regulatory element (FIRE). However, it is unknown whether FIRE deficiency also impacts BAM arrival and/or maintenance. Here, we show that macrophages in the ventricular system of the brain, including Kolmer's epiplexus macrophages, are absent in Csf1rΔFIRE/ΔFIRE mice. Stromal choroid plexus BAMs are also considerably reduced. During normal development, we demonstrate that intracerebroventricular macrophages arrive from embryonic day 10.5, and can traverse ventricular walls in embryonic slice cultures. In Csf1rΔFIRE/ΔFIRE embryos, the arrival of both primitive microglia and intracerebroventricular macrophages was eliminated, whereas the arrival of cephalic mesenchyme and stromal choroid plexus BAMs was only partially restricted. Our results provide new insights into the development and regulation of different CNS macrophage populations.


Assuntos
Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Embrião de Mamíferos , Íntrons/genética , Camundongos , Microglia/metabolismo , Tecido Parenquimatoso/crescimento & desenvolvimento , Tecido Parenquimatoso/metabolismo , Sequências Reguladoras de Ácido Nucleico
11.
J Immunol ; 205(11): 3154-3166, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139489

RESUMO

The proliferation, differentiation, and survival of cells of the mononuclear phagocyte system (MPS; progenitors, monocytes, macrophages, and classical dendritic cells) are controlled by signals from the M-CSF receptor (CSF1R). Cells of the MPS lineage have been identified using numerous surface markers and transgenic reporters, but none is both universal and lineage restricted. In this article, we report the development and characterization of a CSF1R reporter mouse. A FusionRed (FRed) cassette was inserted in-frame with the C terminus of CSF1R, separated by a T2A-cleavable linker. The insertion had no effect of CSF1R expression or function. CSF1R-FRed was expressed in monocytes and macrophages and absent from granulocytes and lymphocytes. In bone marrow, CSF1R-FRed was absent in lineage-negative hematopoietic stem cells, arguing against a direct role for CSF1R in myeloid lineage commitment. It was highly expressed in marrow monocytes and common myeloid progenitors but significantly lower in granulocyte-macrophage progenitors. In sections of bone marrow, CSF1R-FRed was also detected in osteoclasts, CD169+ resident macrophages, and, consistent with previous mRNA analysis, in megakaryocytes. In lymphoid tissues, CSF1R-FRed highlighted diverse MPS populations, including classical dendritic cells. Whole mount imaging of nonlymphoid tissues in mice with combined CSF1R-FRed/Csf1r-EGFP confirmed the restriction of CSF1R expression to MPS cells. The two markers highlight the remarkable abundance and regular distribution of tissue MPS cells, including novel macrophage populations within tendon and skeletal muscle and underlying the mesothelial/serosal/capsular surfaces of every major organ. The CSF1R-FRed mouse provides a novel reporter with exquisite specificity for cells of the MPS.


Assuntos
Biomarcadores/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Dendríticas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/metabolismo , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Tendões/metabolismo
12.
J Leukoc Biol ; 107(2): 221-235, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31397014

RESUMO

Macrophages are present in large numbers in every tissue in the body where they play critical roles in development and homeostasis. They exhibit remarkable phenotypic and functional diversity, underpinning their adaptation to specialized roles in each tissue niche. CSF1, signaling through the CSF1 receptor, which is restricted to monocyte-macrophage lineage cells in adults, is a critical growth factor controlling macrophage proliferation, differentiation, and many aspects of mature macrophage function. We have generated a macrophage reporter rat, utilizing a construct containing elements of the mouse Csf1r promoter and the highly conserved Fms intronic regulatory element to drive mApple fluorescent protein expression. Csf1r-mApple was robustly expressed in monocyte-macrophage lineage cells in rat bone marrow (BM), peripheral blood, and tissues, with detectable expression in granulocytes and B cells and no evidence of expression in hematopoietic precursors or non-hematopoietic cells. Here, we use the Csf1r-mApple transgene to highlight and dissect the abundance and heterogeneity of rat tissue macrophage populations, and to demonstrate parallel increases in blood monocytes and multiple tissue macrophage populations, including BM, liver, spleen, and lung, in response to CSF1 treatment in vivo. The Csf1r-mApple rat is a novel tool enabling analysis of rat macrophages in situ by direct imaging and providing an additional phenotypic marker to facilitate exploration of rat tissue macrophage phenotypic and functional heterogeneity.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Fator Estimulador de Colônias de Macrófagos/administração & dosagem , Macrófagos/fisiologia , Monócitos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Feminino , Macrófagos/citologia , Masculino , Monócitos/citologia , Ratos , Ratos Sprague-Dawley , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Distribuição Tecidual
13.
J Leukoc Biol ; 107(2): 205-219, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31330095

RESUMO

Mϕ proliferation, differentiation, and survival are controlled by signals from the Mϕ CSF receptor (CSF1R). Mono-allelic gain-of-function mutations in CSF1R in humans are associated with an autosomal-dominant leukodystrophy and bi-allelic loss-of-function mutations with recessive skeletal dysplasia, brain disorders, and developmental anomalies. Most of the phenotypes observed in these human disease states are also observed in mice and rats with loss-of-function mutations in Csf1r or in Csf1 encoding one of its two ligands. Studies in rodent models also highlight the importance of genetic background and likely epistatic interactions between Csf1r and other loci. The impacts of Csf1r mutations on the brain are usually attributed solely to direct impacts on microglial number and function. However, analysis of hypomorphic Csf1r mutants in mice and several other lines of evidence suggest that primary hydrocephalus and loss of the physiological functions of Mϕs in the periphery contribute to the development of brain pathology. In this review, we outline the evidence that CSF1R is expressed exclusively in mononuclear phagocytes and explore the mechanisms linking CSF1R mutations to pleiotropic impacts on postnatal growth and development.


Assuntos
Encefalopatias/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/patologia , Receptores de Fator Estimulador de Colônias/metabolismo , Animais , Encefalopatias/genética , Encefalopatias/metabolismo , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/metabolismo , Morfogênese , Mutação , Fenótipo , Receptores de Fator Estimulador de Colônias/deficiência
14.
Nat Commun ; 10(1): 3215, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324781

RESUMO

The proliferation, differentiation and survival of mononuclear phagocytes depend on signals from the receptor for macrophage colony-stimulating factor, CSF1R. The mammalian Csf1r locus contains a highly conserved super-enhancer, the fms-intronic regulatory element (FIRE). Here we show that genomic deletion of FIRE in mice selectively impacts CSF1R expression and tissue macrophage development in specific tissues. Deletion of FIRE ablates macrophage development from murine embryonic stem cells. Csf1rΔFIRE/ΔFIRE mice lack macrophages in the embryo, brain microglia and resident macrophages in the skin, kidney, heart and peritoneum. The homeostasis of other macrophage populations and monocytes is unaffected, but monocytes and their progenitors in bone marrow lack surface CSF1R. Finally, Csf1rΔFIRE/ΔFIRE mice are healthy and fertile without the growth, neurological or developmental abnormalities reported in Csf1r-/- rodents. Csf1rΔFIRE/ΔFIRE mice thus provide a model to explore the homeostatic, physiological and immunological functions of tissue-specific macrophage populations in adult animals.


Assuntos
Genes fms/genética , Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Deleção de Sequência , Animais , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Células-Tronco Embrionárias/patologia , Fator de Crescimento Epidérmico , Feminino , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Monócitos/metabolismo , Fagocitose , Células RAW 264.7 , Sequências Reguladoras de Ácido Nucleico/genética
15.
Elife ; 82019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30758286

RESUMO

The origins and functions of kidney macrophages in the adult have been explored, but their roles during development remain largely unknown. Here we characterise macrophage arrival, localisation, heterogeneity, and functions during kidney organogenesis. Using genetic approaches to ablate macrophages, we identify a role for macrophages in nephron progenitor cell clearance as mouse kidney development begins. Throughout renal organogenesis, most kidney macrophages are perivascular and express F4/80 and CD206. These macrophages are enriched for mRNAs linked to developmental processes, such as blood vessel morphogenesis. Using antibody-mediated macrophage-depletion, we show macrophages support vascular anastomoses in cultured kidney explants. We also characterise a subpopulation of galectin-3+ (Gal3+) myeloid cells within the developing kidney. Our findings may stimulate research into macrophage-based therapies for renal developmental abnormalities and have implications for the generation of bioengineered kidney tissues.


Assuntos
Galectina 3/genética , Rim/crescimento & desenvolvimento , Néfrons/crescimento & desenvolvimento , Organogênese/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Rim/metabolismo , Lectinas Tipo C/genética , Macrófagos/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/genética , Camundongos , Néfrons/metabolismo , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco/metabolismo
16.
Trends Immunol ; 40(2): 98-112, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30579704

RESUMO

The mononuclear phagocyte system (MPS) is defined as a cell lineage in which committed marrow progenitors give rise to blood monocytes and tissue macrophages. Here, we discuss the concept of self-proscribed macrophage territories and homeostatic regulation of tissue macrophage abundance through growth factor availability. Recent studies have questioned the validity of the MPS model and argued that tissue-resident macrophages are a separate lineage seeded during development and maintained by self-renewal. We address this issue; discuss the limitations of inbred mouse models of monocyte-macrophage homeostasis; and summarize the evidence suggesting that during postnatal life, monocytes can replace resident macrophages in all major organs and adopt their tissue-specific gene expression. We conclude that the MPS remains a valid and accurate framework for understanding macrophage development and homeostasis.


Assuntos
Macrófagos/imunologia , Monócitos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Animais , Homeostase , Humanos , Camundongos
17.
Front Immunol ; 9: 2246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327653

RESUMO

The F4/80 antigen, encoded by the Adgre1 locus, has been widely-used as a monocyte-macrophage marker in mice, but its value as a macrophage marker in other species is unclear, and has even been questioned. ADGRE1 is a seven transmembrane G protein-coupled receptor with an extracellular domain containing repeated Epidermal Growth Factor (EGF)-like calcium binding domains. Using a new monoclonal antibody, we demonstrated that ADGRE1 is a myeloid differentiation marker in pigs, absent from progenitors in bone marrow, highly-expressed in mature granulocytes, monocytes, and tissue macrophages and induced by macrophage colony-stimulating factor (CSF1) treatment in vivo. Based upon these observations, we utilized RNA-Seq to assess the expression of ADGRE1 mRNA in bone marrow or monocyte-derived macrophages (MDM) and alveolar macrophages from 8 mammalian species including pig, human, rat, sheep, goat, cow, water buffalo, and horse. ADGRE1 mRNA was expressed by macrophages in each species, with inter-species variation both in expression level and response to lipopolysaccharide (LPS) stimulation. Analysis of the RNA-Seq data also revealed additional exons in several species compared to current Ensembl annotations. The ruminant species and horses appear to encode a complete duplication of the 7 EGF-like domains. In every species, Sashimi plots revealed evidence of exon skipping of the EGF-like domains, which are highly-variable between species and polymorphic in humans. Consistent with these expression patterns, key elements of the promoter and a putative enhancer are also conserved across all species. The rapid evolution of this molecule and related ADGRE family members suggests immune selection and a role in pathogen recognition.


Assuntos
Antígenos de Diferenciação/genética , Macrófagos/fisiologia , Glicoproteínas de Membrana/genética , Mucinas/genética , Receptores Acoplados a Proteínas G/genética , Sus scrofa/genética , Processamento Alternativo , Animais , Anticorpos Monoclonais Murinos , Antígenos de Diferenciação/imunologia , Sequência de Bases , Biomarcadores , Células da Medula Óssea/citologia , Proteínas de Ligação ao Cálcio , Diferenciação Celular/fisiologia , Células Cultivadas , Fator de Crescimento Epidérmico/genética , Éxons , Feminino , Expressão Gênica , Células HEK293 , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Mucinas/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transcrição Gênica
18.
J Immunol ; 201(9): 2683-2699, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30249809

RESUMO

We have produced Csf1r-deficient rats by homologous recombination in embryonic stem cells. Consistent with the role of Csf1r in macrophage differentiation, there was a loss of peripheral blood monocytes, microglia in the brain, epidermal Langerhans cells, splenic marginal zone macrophages, bone-associated macrophages and osteoclasts, and peritoneal macrophages. Macrophages of splenic red pulp, liver, lung, and gut were less affected. The pleiotropic impacts of the loss of macrophages on development of multiple organ systems in rats were distinct from those reported in mice. Csf1r-/- rats survived well into adulthood with postnatal growth retardation, distinct skeletal and bone marrow abnormalities, infertility, and loss of visceral adipose tissue. Gene expression analysis in spleen revealed selective loss of transcripts associated with the marginal zone and, in brain regions, the loss of known and candidate novel microglia-associated transcripts. Despite the complete absence of microglia, there was little overt phenotype in brain, aside from reduced myelination and increased expression of dopamine receptor-associated transcripts in striatum. The results highlight the redundant and nonredundant functions of CSF1R signaling and of macrophages in development, organogenesis, and homeostasis.


Assuntos
Macrófagos , Microglia , Organogênese/genética , Ratos/crescimento & desenvolvimento , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência , Animais , Modelos Animais , Mutação , Ratos/genética
19.
Immunity ; 49(2): 312-325.e5, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076102

RESUMO

Heterogeneity between different macrophage populations has become a defining feature of this lineage. However, the conserved factors defining macrophages remain largely unknown. The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal transition; however, its role within the immune system is only now being elucidated. We show here that Zeb2 expression is a conserved feature of macrophages. Using Clec4f-cre, Itgax-cre, and Fcgr1-cre mice to target five different macrophage populations, we found that loss of ZEB2 resulted in macrophage disappearance from the tissues, coupled with their subsequent replenishment from bone-marrow precursors in open niches. Mechanistically, we found that ZEB2 functioned to maintain the tissue-specific identities of macrophages. In Kupffer cells, ZEB2 achieved this by regulating expression of the transcription factor LXRα, removal of which recapitulated the loss of Kupffer cell identity and disappearance. Thus, ZEB2 expression is required in macrophages to preserve their tissue-specific identities.


Assuntos
Células de Kupffer/citologia , Receptores X do Fígado/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Animais , Linhagem da Célula/imunologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Células de Kupffer/imunologia , Fígado/citologia , Receptores X do Fígado/metabolismo , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Nat Commun ; 9(1): 1272, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593242

RESUMO

Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis. In the intestinal lamina propria CSF1R mRNA expression is restricted to macrophages which are intimately associated with the crypt epithelium, and is undetectable in Paneth cells. Macrophage ablation following CSF1R blockade affects Paneth cell differentiation and leads to a reduction of Lgr5+ intestinal stem cells. The disturbances to the crypt caused by macrophage depletion adversely affect the subsequent differentiation of intestinal epithelial cell lineages. Goblet cell density is enhanced, whereas the development of M cells in Peyer's patches is impeded. We suggest that modification of the phenotype or abundance of macrophages in the gut wall alters the development of the intestinal epithelium and the ability to sample gut antigens.


Assuntos
Mucosa Intestinal/metabolismo , Macrófagos/citologia , Mucosa/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Células Caliciformes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Intestinos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Celulas de Paneth/citologia , Nódulos Linfáticos Agregados/citologia , Fenótipo , RNA Mensageiro/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA