Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115946

RESUMO

BACKGROUND: Though currently approved immunotherapies, including chimeric antigen receptor T cells and checkpoint blockade antibodies, have been successfully used to treat hematological and some solid tumor cancers, many solid tumors remain resistant to these modes of treatment. In solid tumors, the development of effective antitumor immune responses is hampered by restricted immune cell infiltration and an immunosuppressive tumor microenvironment (TME). An immunotherapy that infiltrates and persists in the solid TME, while providing local, stable levels of therapeutic to activate or reinvigorate antitumor immunity could overcome these challenges faced by current immunotherapies. METHODS: Using lentivirus-driven engineering, we programmed human and murine macrophages to express therapeutic payloads, including Interleukin (IL)-12. In vitro coculture studies were used to evaluate the effect of genetically engineered macrophages (GEMs) secreting IL-12 on T cells and on the GEMs themselves. The effects of IL-12 GEMs on gene expression profiles within the TME and tumor burden were evaluated in syngeneic mouse models of glioblastoma and melanoma and in human tumor slices isolated from patients with advanced gastrointestinal malignancies. RESULTS: Here, we present a cellular immunotherapy platform using lentivirus-driven genetic engineering of human and mouse macrophages to constitutively express proteins, including secreted cytokines and full-length checkpoint antibodies, as well as cytoplasmic and surface proteins that overcomes these barriers. GEMs traffic to, persist in, and express lentiviral payloads in xenograft mouse models of glioblastoma, and express a non-signaling truncated CD19 surface protein for elimination. IL-12-secreting GEMs activated T cells and induced interferon-gamma (IFNγ) in vitro and slowed tumor growth resulting in extended survival in vivo. In a syngeneic glioblastoma model, IFNγ signaling cascades were also observed in mice treated with mouse bone-marrow-derived GEMs secreting murine IL-12. These findings were reproduced in ex vivo tumor slices comprised of intact MEs. In this setting, IL-12 GEMs induced tumor cell death, chemokines and IFNγ-stimulated genes and proteins. CONCLUSIONS: Our data demonstrate that GEMs can precisely deliver titratable doses of therapeutic proteins to the TME to improve safety, tissue penetrance, targeted delivery and pharmacokinetics.


Assuntos
Engenharia Genética/métodos , Imunoterapia/métodos , Macrófagos/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
2.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33122397

RESUMO

BACKGROUND: Targeted and effective treatment options are needed for solid tumors, including glioblastoma (GBM), where survival rates with standard treatments are typically less than 2 years from diagnosis. Solid tumors pose many barriers to immunotherapies, including therapy half-life and persistence, tumor penetrance, and targeting. Therapeutics delivered systemically may not traffic to the tumor site. If cellular therapies or drugs are able to access the tumor site, or can be delivered directly within the tumor, treatments may not persist for the duration necessary to reduce or eliminate tumor burden. An approach that allows durable and titratable local therapeutic protein delivery could improve antitumor efficacy while minimizing toxicities or unwanted on-target, off-tissue effects. METHODS: In this study, human monocyte-derived macrophages were genetically engineered to secrete a bispecific T cell engager (BiTE) specific to the mutated epidermal growth factor variant III (EGFRvIII) expressed by some GBM tumors. We investigated the ability of lentivirally modified macrophages to secrete a functional BiTE that can bind target tumor antigen and activate T cells. Secreted BiTE protein was assayed in a range of T cell functional assays in vitro and in subcutaneous and intracranial GBM xenograft models. Finally, we tested genetically engineered macrophages (GEMs) secreting BiTE and the proinflammatory cytokine interleukin (IL)-12 to amplify T cell responses in vitro and in vivo. RESULTS: Transduced human macrophages secreted a lentivirally encoded functional EGFRvIII-targeted BiTE protein capable of inducing T cell activation, proliferation, degranulation, and killing of antigen-specific tumor cells. Furthermore, BiTE secreting macrophages reduced early tumor burden in both subcutaneous and intracranial mouse models of GBM, a response which was enhanced using macrophages that were dual transduced to secrete both the BiTE protein and single chain IL-12, preventing tumor growth in an aggressive GBM model. CONCLUSIONS: The ability of macrophages to infiltrate and persist in solid tumor tissue could overcome many of the obstacles associated with systemic delivery of immunotherapies. We have found that human GEMs can locally and constitutively express one or more therapeutic proteins, which may help recruit T cells and transform the immunosuppressive tumor microenvironment to better support antitumor immunity.


Assuntos
Anticorpos Biespecíficos/imunologia , Neoplasias Encefálicas/genética , Glioblastoma/genética , Imunoterapia/métodos , Linfócitos T/imunologia , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Humanos , Camundongos , Transfecção , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA