Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sci Rep ; 13(1): 22477, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110472

RESUMO

To determine the readmissions trends and the comorbidities of patients with heart failure that most influence hospital readmission rates. Heart failure (HF) is one of the most prevalent health problems as it causes loss of quality of life and increased health-care costs. Its prevalence increases with age and is a major cause of re-hospitalisation within 30 days after discharge. INCA study had observational and ambispective design, including 4,959 patients from 2000 to 2019, with main diagnosis of HF in Extremadura (Spain). The variables examined were collected from discharge reports. To develop the readmission index, capable of discriminating the population with higher probability of re-hospitalisation, a Competing-risk model was generated. Readmission rate have increased over the period under investigation. The main predictors of readmission were: age, diabetes mellitus, presence of neoplasia, HF without previous hospitalisation, atrial fibrillation, anaemia, previous myocardial infarction, obstructive pulmonary disease (COPD) and chronic kidney disease (CKD). These variables were assigned values with balanced weights, our INCA index showed that the population with values greater than 2 for men and women were more likely to be re-admitted. Previous HF without hospital admission, CKD, and COPD appear to have the greatest effect on readmission. Our index allowed us to identify patients with different risks of readmission.


Assuntos
Insuficiência Cardíaca , Readmissão do Paciente , Readmissão do Paciente/estatística & dados numéricos , Readmissão do Paciente/tendências , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Alta do Paciente/estatística & dados numéricos , Espanha/epidemiologia , Fatores de Risco , Medição de Risco , Humanos , Masculino , Feminino
2.
Cancers (Basel) ; 15(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136362

RESUMO

B-cell chronic lymphocytic leukemia (B-CLL) is the most common type of leukemia in the Western world. Mutation in different genes, such as TP53 and ATM, and deletions at specific chromosomic regions, among which are 11q or 17p, have been described to be associated to worse disease prognosis. Recent research from our group has demonstrated that, contrary to what is the usual cancer development process through missense mutations, B-CLL is driven by the overexpression of the small GTPase RRAS2 in its wild-type form without activating mutations. Some mouse models of this disease have been developed to date and are commonly used in B-CLL research, but they present different disadvantages such as the long waiting period until the leukemia fully develops, the need to do cell engraftment or, in some cases, the fact that the model does not recapitulate the alterations found in human patients. We have recently described Rosa26-RRAS2fl/flxmb1-Cre as a new mouse model of B-CLL with a full penetrance of the disease. In this work, we have validated this mouse model as a novel tool for the development of new therapies for B-CLL, by testing two of the most broadly applied targeted agents: ibrutinib and venetoclax. This also opens the door to new targeted agents against R-RAS2 itself, an approach not yet explored in the clinic.

3.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241878

RESUMO

Dragon's blood sap (DBS) obtained from the bark of Croton lechleri (Müll, Arg.) is a complex herbal remedy of pharmacological interest due to its high content in polyphenols, specifically proanthocyanidins. In this paper, electrospraying assisted by pressurized gas (EAPG) was first compared with freeze-drying to dry natural DBS. Secondly, EAPG was used for the first time to entrap natural DBS at room temperature into two different encapsulation matrices, i.e., whey protein concentrate (WPC) and zein (ZN), using different ratios of encapsulant material: bioactive compound, for instance 2:1 w/w and 1:1 w/w. The obtained particles were characterized in terms of morphology, total soluble polyphenolic content (TSP), antioxidant activity, and photo-oxidation stability during the 40 days of the experiment. Regarding the drying process, EAPG produced spherical particles with sizes of 11.38 ± 4.34 µm, whereas freeze-drying produced irregular particles with a broad particle size distribution. However, no significant differences were detected between DBS dried by EAPG or freeze-drying in TSP, antioxidant activity, and photo-oxidation stability, confirming that EAPG is a mild drying process suitable to dry sensitive bioactive compounds. Regarding the encapsulation process, the DBS encapsulated within the WPC produced smooth spherical microparticles, with average sizes of 11.28 ± 4.28 µm and 12.77 ± 4.54 µm for ratios 1:1 w/w and 2:1 w/w, respectively. The DBS was also encapsulated into ZN producing rough spherical microparticles, with average sizes of 6.37 ± 1.67 µm and 7.58 ± 2.54 µm for ratios 1:1 w/w and 2:1 w/w, respectively. The TSP was not affected during the encapsulation process. However, a slight reduction in antioxidant activity measured by DPPH was observed during encapsulation. An accelerated photo-oxidation test under ultraviolet light confirmed that the encapsulated DBS showed an increased oxidative stability in comparison with the non-encapsulated DBS, with the stability being enhanced for the ratio of 2:1 w/w. Among the encapsulating materials and according to the ATR-FTIR results, ZN showed increased protection against UV light. The obtained results demonstrate the potential of EAPG technology in the drying or encapsulation of sensitive natural bioactive compounds in a continuous process available at an industrial scale, which could be an alternative to freeze-drying.


Assuntos
Antioxidantes , Zeína , Proteínas do Soro do Leite/química
4.
ACS Omega ; 8(4): 3798-3811, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743045

RESUMO

In the present study, electrospun nanofibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, containing natural deep eutectic solvents (NADES) were obtained and reported for the first time, exhibiting an unreported 3D morphology and enhanced charge retention properties. Choline chloride (ChCl)/urea/water in a molar ratio of 1:2:1 was used as the NADES model system. Electrospun nanofibers were produced from a 10 wt % solution of PHBV containing 26 wt % NADES with respect to the polymer and were deposited on different substrates, that is, aluminum foil and non-woven spunbond polypropylene (PP). The morphology and charge retention ability were characterized under different conditions and on different substrates. The attained fiber morphology for the NADES-containing mats showed an average fiber diameter of around 300 nm, whereas the pure PHBV polymer under the same conditions produced electrospun fibers of around 880 nm. However, the deposition of PHBV/ChCl/urea/water fibers resulted in a surprising macroscopic rugose 3D surface morphology made of aligned nanofibers when processed at 50% relative humidity (RH). The nanofiber grammages above which this 3D morphology, associated with NADES-induced charge retention, formed was found to be dependent on the substrate used and RH. This morphology was not seen at 20% RH nor when pure PHBV was produced. Charge stability studies revealed that PHBV/ChCl/urea/water nanofibers exhibited lasting charge retention, especially when sandwiched between spunbond polypropylene textiles. Finally, such multilayer structures containing a very thin double layer of PHBV/ChCl/urea/water fibers after corona treatment exhibited improved paraffin aerosol penetration, which was ascribed to the combination of thinner fibers and their charge retention capacity. The here-developed electrospun PHBV fibers containing NADES demonstrated for the first time a new potential application as electret filter media.

6.
Blood ; 141(9): 1047-1059, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36455198

RESUMO

Venetoclax combination therapies are becoming the standard of care in acute myeloid leukemia (AML). However, the therapeutic benefit of these drugs in older/unfit patients is limited to only a few months, highlighting the need for more effective therapies. Protein phosphatase 2A (PP2A) is a tumor suppressor phosphatase with pleiotropic functions that becomes inactivated in ∼70% of AML cases. PP2A promotes cancer cell death by modulating the phosphorylation state in a variety of proteins along the mitochondrial apoptotic pathway. We therefore hypothesized that pharmacological PP2A reactivation could increase BCL2 dependency in AML cells and, thus, potentiate venetoclax-induced cell death. Here, by using 3 structurally distinct PP2A-activating drugs, we show that PP2A reactivation synergistically enhances venetoclax activity in AML cell lines, primary cells, and xenograft models. Through the use of gene editing tools and pharmacological approaches, we demonstrate that the observed therapeutic synergy relies on PP2A complexes containing the B56α regulatory subunit, of which expression dictates response to the combination therapy. Mechanistically, PP2A reactivation enhances venetoclax-driven apoptosis through simultaneous inhibition of antiapoptotic BCL2 and extracellular signal-regulated kinase signaling, with the latter decreasing MCL1 protein stability. Finally, PP2A targeting increases the efficacy of the clinically approved venetoclax and azacitidine combination in vitro, in primary cells, and in an AML patient-derived xenograft model. These preclinical results provide a scientific rationale for testing PP2A-activating drugs with venetoclax combinations in AML.


Assuntos
Leucemia Mieloide Aguda , Proteína Fosfatase 2 , Humanos , Idoso , Proteína de Sequência 1 de Leucemia de Células Mieloides , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2 , Leucemia Mieloide Aguda/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose
7.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144884

RESUMO

In this paper, the effect of protein purity in three different whey protein grades on the characteristics of algae oil encapsulates obtained via room-temperature electrospraying assisted by pressurized gas (EAPG) encapsulation process was studied. Three different commercial grades of whey protein purity were evaluated, namely 35, 80, and 90 wt.%. Oil nanodroplets with an average size of 600 nm were homogeneously entrapped into whey protein microparticles 3 µm in size. However, the sphericity and the surface smoothness of the microparticles increased by increasing the protein purity in the grades of whey protein studied. The porosity of the microparticles was also dependent on protein purity as determined by nitrogen adsorption-desorption isotherms, being smaller for larger contents of protein. Interestingly, the lowest extractable oil was obtained with WP35, probably due to the high content of lactose. The peroxide values confirmed the superior protective effect of the protein, obtaining the smallest peroxide value for WP90, a result that is consistent with its reduced porosity and with its lower permeability to oxygen, as confirmed by the fluorescence decay-oxygen consumption method. The accelerated stability assay against oxidation confirmed the higher protection of the WP80 and WP90. In addition, the increased content in protein implied a higher thermal stability according to the thermogravimetric analysis. These results further confirm the importance of the adequate selection of the composition of wall materials together with the encapsulation method.

8.
Cells ; 11(16)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010619

RESUMO

The loss-of-function conditions for an l(3)malignant brain tumour (l(3)mbt) in larvae reared at 29 °C results in malignant brain tumours and hyperplastic imaginal discs. Unlike the former that have been extensively characterised, little is known about the latter. Here we report the results of a study of the hyperplastic l(3)mbt mutant wing imaginal discs. We identify the l(3)mbt wing disc tumour transcriptome and find it to include genes involved in reactive oxygen species (ROS) metabolism. Furthermore, we show the presence of oxidative stress in l(3)mbt hyperplastic discs, even in apoptosis-blocked conditions, but not in l(3)mbt brain tumours. We also find that chemically blocking oxidative stress in l(3)mbt wing discs reduces the incidence of wing disc overgrowths. Our results reveal the involvement of oxidative stress in l(3)mbt wing discs hyperplastic growth.


Assuntos
Proteínas de Drosophila , Discos Imaginais , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Discos Imaginais/metabolismo , Estresse Oxidativo , Asas de Animais/metabolismo
9.
Blood ; 140(23): 2463-2476, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35960849

RESUMO

Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of hematological cancers arising from the malignant transformation of mature T cells. In a cohort of 28 PTCL cases, we identified recurrent overexpression of MYCN, a member of the MYC family of oncogenic transcription factors. Approximately half of all PTCL cases was characterized by a MYC expression signature. Inducible expression of MYCN in lymphoid cells in a mouse model caused T-cell lymphoma that recapitulated human PTCL with an MYC expression signature. Integration of mouse and human expression data identified EZH2 as a key downstream target of MYCN. Remarkably, EZH2 was found to be an essential cofactor for the transcriptional activation of the MYCN-driven gene expression program, which was independent of methyltransferase activity but dependent on phosphorylation by CDK1. MYCN-driven T-cell lymphoma was sensitive to EZH2 degradation or CDK1 inhibition, which displayed synergy with US Food and Drug Administration-approved histone deacetylase (HDAC) inhibitors.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Linfoma de Células T Periférico , Proteína Proto-Oncogênica N-Myc , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linfoma de Células T Periférico/genética , Proteína Proto-Oncogênica N-Myc/genética
10.
Anticancer Agents Med Chem ; 22(15): 2788-2798, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35297353

RESUMO

BACKGROUND: The Coccoloba uvifera L. species is currently considered an important source of compounds of high biological value such as lupeol. This is related to different and important biological activities to human health. OBJECTIVE: The objective of this study was to encapsulate the C. uvifera extract in nanofibers made with the biopolymers gelatin (G)/high-grade polymerization agave fructans (HDPAF) in the proportions 1:0, 1:1, 1:2, 1:3 and 0:1, through the electrospinning process, in addition to evaluating the antimutagenic and antiproliferative properties of the encapsulated extract. METHODS: The physicochemical characteristics of the nanofibers were evaluated, as well as the antiproliferative and antimutagenic activities of the encapsulated and unencapsulated extract. SEM evaluation shows nanofibers of smooth, continuous morphology and nanometric size (50-250 nm). The TGA, FTIR-ATR, HPLC-MS analyses reveal the presence of the extract in the nanofibers. RESULTS: The extract did not show a mutagenic effect during the development of the Ames test, on the other hand, the MTT test showed the antiproliferative effect at the concentrations of 50 and 100 µg/mL of extract. CONCLUSION: The extract of C. uvifera loaded in nanofibers elaborated by electrospinning with the G/HDPAF biopolymers conserves its antimutagenic and antiproliferative properties.


Assuntos
Agave , Nanofibras , Agave/química , Biopolímeros , Frutanos/química , Frutanos/farmacologia , Gelatina , Humanos , Nanofibras/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
Polymers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201828

RESUMO

In the present study, poly(ethylene-co-vinyl alcohol) with 44 mol % ethylene content (EVOH44) was managed to be processed, for the first time, by electrospinning assisted by the coaxial technology of solvent jacket. In addition to this, different suspensions of cellulose nanocrystals (CNCs), with contents ranging from 0.1 to 1.0 wt %, were also electrospun to obtain hybrid bio-/non-bio nanocomposites. The resultant fiber mats were thereafter optimally annealed to promote interfiber coalescence at 145 °C, below the EVOH44 melting point, leading to continuous transparent fiber-based films. The morphological analysis revealed the successful distribution of CNCs into EVOH44 up to contents of 0.5 wt %. The incorporation of CNCs into the ethylene-vinyl alcohol copolymer caused a decrease in the crystallization and melting temperatures (TC and Tm) of about 12 and 7 °C, respectively, and also crystallinity. However, the incorporation of CNCs led to enhanced thermal stability of the copolymer matrix for a nanofiller content of 1.0 wt %. Furthermore, the incorporation of 0.1 and 0.5 wt % CNCs produced increases in the tensile modulus (E) of ca. 38% and 28%, respectively, but also yielded a reduction in the elongation at break and toughness. The oxygen barrier of the hybrid nanocomposite fiber-based films decreased with increasing the CNCs content, but they were seen to remain high barrier, especially in the low relative humidity (RH) regime, i.e., at 20% RH, showing permeability values lower than 0.6 × 10-20 m3·m·m-2·Pa-1·s-1. In general terms, an optimal balance in physical properties was found for the hybrid copolymer composite with a CNC loading of 0.1 wt %. On the overall, the present study demonstrates the potential of annealed electrospun fiber-based high-barrier polymers, with or without CNCs, to develop novel barrier interlayers to be used as food packaging constituents.

12.
J Hematol Oncol ; 14(1): 97, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167562

RESUMO

BACKGROUND: T cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype that comprises 10-15% of childhood and 20-25% of adult ALL cases. Over 70% of T-ALL patients harbor activating mutations in the NOTCH1 signaling pathway and are predicted to be sensitive to gamma-secretase inhibitors. We have recently demonstrated that selective inhibition of PSEN1-containing gamma-secretase complexes can overcome the dose-limiting toxicity associated with broad gamma-secretase inhibitors. In this study, we developed combination treatment strategies with the PSEN1-selective gamma-secretase inhibitor MRK-560 and other targeted agents (kinase inhibitors ruxolitinib and imatinib; XPO-1 inhibitor KPT-8602/eltanexor) for the treatment of T-ALL. METHODS: We treated T-ALL cell lines in vitro and T-ALL patient-derived xenograft (PDX) models in vivo with MRK-560 alone or in combination with other targeted inhibitors (ruxolitinib, imatinib or KPT-8602/eltanexor). We determined effects on proliferation of the cell lines and leukemia development and survival in the PDX models. RESULTS: All NOTCH1-signaling-dependent T-ALL cell lines were sensitive to MRK-560 and its combination with ruxolitinib or imatinib in JAK1- or ABL1-dependent cell lines synergistically inhibited leukemia proliferation. We also observed strong synergy between MRK-560 and KPT-8602 (eltanexor) in all NOTCH1-dependent T-ALL cell lines. Such synergy was also observed in vivo in a variety of T-ALL PDX models with NOTCH1 or FBXW7 mutations. Combination treatment significantly reduced leukemic infiltration in vivo and resulted in a survival benefit when compared to single treatment groups. We did not observe weight loss or goblet cell hyperplasia in single drug or combination treated mice when compared to control. CONCLUSIONS: These data demonstrate that the antileukemic effect of PSEN1-selective gamma-secretase inhibition can be synergistically enhanced by the addition of other targeted inhibitors. The combination of MRK-560 with KPT-8602 is a highly effective treatment combination, which circumvents the need for the identification of additional mutations and provides a clear survival benefit in vivo. These promising preclinical data warrant further development of combination treatment strategies for T-ALL based on PSEN1-selective gamma-secretase inhibition.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antineoplásicos/farmacologia , Carioferinas/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Mesilato de Imatinib/uso terapêutico , Camundongos , Terapia de Alvo Molecular , Nitrilas/uso terapêutico , Presenilina-1/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Proteína Exportina 1
13.
Nanomaterials (Basel) ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915897

RESUMO

Electrospinning has been used to develop and upscale polyacrylonitrile (PAN) nanofibers as effective aerosol filtration materials for their potential use in respirators. The fibers were deposited onto non-woven spunbond polypropylene (SPP) and the basis weight (grammage, g/m2) was varied to assess the resulting effect on filtration efficiency and breathing resistance of the materials. The results indicated that a basis weight in excess of 0.4 g/m2 of PAN electrospun fibers yielded a filtration efficiency over 97%, with breathing resistance values that increased proportionally with the amount of basis weight added. With the aim of retaining filter efficiency whilst lowering breathing resistance, the basis weight of 0.4 g/m2 and 0.8 g/m2 of PAN electrospun fibers were strategically split up and stacked with SPP in different configurations. The results suggested that a symmetric structure based on SPP/PAN/PAN/SPP was the optimal structure, as it reduces SPP consumption while maintaining an FFP2-type of filtration efficiency, while reducing breathing resistance, specially at high air flow rates, such as those mimicking FFP2 exhalation conditions. The incorporation of zinc oxide (ZnO) nanoparticles within the electrospun nanofibers in the form of nanocomposites, retained the high filtration characteristics of the unfilled filter, while exhibiting a strong bactericidal capacity, even after short contact times. This study demonstrates the potential of using the symmetric splitting of the PAN nanofibers layer as a somewhat more efficient configuration in the design of filters for respirators.

14.
Nanomaterials (Basel) ; 11(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668857

RESUMO

In this study, emulsion electrospraying assisted by pressurized gas (EAPG) has been performed for the first time to entrap ca. 760 nm droplets of the bioactive eicosapentaenoic acid (EPA)-rich oil into whey protein concentrate (WPC) at room temperature. The submicron droplets of EPA oil were encapsulated within WPC spherical microparticles, with sizes around 5 µm. The EPA oil did not oxidize in the course of the encapsulation performed at 25 °C and in the presence of air, as corroborated by the peroxide value measurements. Attenuated Total Reflection-Fourier Transform Infrared spectroscopy and oxygen consumption tests confirmed that the encapsulated EPA-rich oil showed increased oxidative stability in comparison with the free oil during an accelerated oxidation test under ultraviolet light. Moreover, the encapsulated EPA-rich oil showed increased thermal stability in comparison with the free oil, as measured by oxidative thermogravimetric analysis. The encapsulated EPA-rich oil showed a somewhat reduced organoleptic impact in contrast with the neat EPA oil using rehydrated powdered milk as a reference. Finally, the oxidative stability by thermogravimetric analysis and organoleptic impact of mixtures of EPA and docosahexaenoic acid (DHA)-loaded microparticles was also studied, suggesting an overall reduced organoleptic impact compared to pure EPA. The results here suggest that it is possible to encapsulate 80% polyunsaturated fatty acids (PUFAs)-enriched oils by emulsion EAPG technology at room temperature, which could be used to produce personalized nutraceuticals or pharmaceuticals alone or in combination with other microparticles encapsulating different PUFAs to obtain different targeted health and organoleptic benefits.

15.
Methods Mol Biol ; 2185: 281-298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33165855

RESUMO

Umbilical Cord Blood (CB) is a rich source of hematopoietic stem/progenitor cells (HSPCs) with high proliferative capacity and a naïve immune status. These characteristics, among others, make CB a good source of HSPCs not only for transplantation, but also for biomedical research purposes. Here we describe the methods for human CB-HSPCs isolation, as well as their culture and cryopreservation, viral transduction and sorting, and in vivo and in vitro assays in order to study leukemic processes.


Assuntos
Técnicas de Cultura de Células , Criopreservação , Sangue Fetal , Citometria de Fluxo , Células-Tronco Hematopoéticas , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos
16.
Clin Cancer Res ; 26(21): 5747-5758, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826328

RESUMO

PURPOSE: KPT-8602 (Eltanexor) is a second-generation exportin-1 (XPO1) inhibitor with potent activity against acute lymphoblastic leukemia (ALL) in preclinical models and with minimal effects on normal cells. In this study, we evaluated whether KPT-8602 would synergize with dexamethasone, vincristine, or doxorubicin, three drugs currently used for the treatment of ALL. EXPERIMENTAL DESIGN: First, we searched for the most synergistic combination of KPT-8602 with dexamethasone, vincristine, or doxorubicin in vitro in both B-ALL and T-ALL cell lines using proliferation and apoptosis as a readout. Next, we validated this synergistic effect by treatment of clinically relevant B- and T-ALL patient-derived xenograft models in vivo. Finally, we performed RNA-sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to determine the mechanism of synergy. RESULTS: KPT-8602 showed strong synergism with dexamethasone on human B-ALL and T-ALL cell lines as well as in vivo in three patient-derived ALL xenografts. Compared with single-drug treatment, the drug combination caused increased apoptosis and led to histone depletion. Mechanistically, integration of ChIP-seq and RNA-seq data revealed that addition of KPT-8602 to dexamethasone enhanced the activity of the glucocorticoid receptor (NR3C1) and led to increased inhibition of E2F-mediated transcription. We observed strong inhibition of E2F target genes related to cell cycle, DNA replication, and transcriptional regulation. CONCLUSIONS: Our preclinical study demonstrates that KPT-8602 enhances the effects of dexamethasone to inhibit B-ALL and T-ALL cells via NR3C1- and E2F-mediated transcriptional complexes, allowing to achieve increased dexamethasone effects for patients.


Assuntos
Dexametasona/farmacologia , Doxorrubicina/farmacologia , Carioferinas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Carioferinas/antagonistas & inibidores , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Vincristina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
17.
J Sci Food Agric ; 100(9): 3639-3647, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32201953

RESUMO

BACKGROUND: In recent years, interest in the use of natural compounds as possible substitutes for chemicals, to prevent microbial food spoilage has grown. The antimicrobial activity of the essential oils (EOs) is well known and nowadays there is renewed interest in their application as natural preservatives in postharvest management. The aims of this study were to characterize the EO extracted from pompia leaves and to evaluate its effectiveness for the control of the postharvest decay agent Penicillium digitatum, when applied as vapor contact in new airtight boxes, supplied with a heating system. RESULTS: Fumigation was performed in vitro and on food using two concentrations of the EO, heated at controlled temperature. The headspace analysis revealed that the heating of the EO favored the evaporation of the volatile compounds, without altering their functionality. The treatments reduced the pathogen growth in vitro and rot on inoculated food by about 50%. CONCLUSION: The chemical analysis of the vapor composition demonstrated that heating the oil did not alter the components and thus the antimicrobial effect of the oil. The treatment by vapor contact with the EO was effective in controlling the pathogen growth in vitro but, above all, it was successful in halving rot in vivo. Due to their bioactivity in the vapor phase, EOs could be delivered as fumigants during postharvest protection; however, the techniques commonly employed are not ideal for simulating real pre-treatment conditions. The new device allows real large-scale conditions to be reproduced. © 2020 Society of Chemical Industry.


Assuntos
Antifúngicos/farmacologia , Citrus/química , Óleos Voláteis/farmacologia , Penicillium/efeitos dos fármacos , Óleos de Plantas/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Penicillium/crescimento & desenvolvimento , Folhas de Planta/química , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação
18.
Nanomaterials (Basel) ; 10(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041108

RESUMO

Long chain polyunsaturated omega-3 fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important functional ingredients due to their well-documented health benefits, but highly susceptible to oxidation. One of the most promising approaches to preserve bioactives is their encapsulation within protective matrices. In this paper, an innovative high throughput encapsulation technique termed as emulsion electrospraying assisted by pressurized gas (EAPG) was used to encapsulate at room temperature nanodroplets of algae oil into two food hydrocolloids, whey protein concentrate and maltodextrin. Spherical encapsulating particles with sizes around 5 µm were obtained, where the oil was homogeneously distributed in nanometric cavities with sizes below 300 nm. Peroxide values under 5 meq/kg, demonstrated that the oil did not suffer from oxidation during the encapsulation process carried out at room temperature. An accelerated stability assay against oxidation under strong UV light was performed to check the protective capacity of the different encapsulating materials. While particles made from whey protein concentrate showed good oxidative stability, particles made from maltodextrin were more susceptible to secondary oxidation, as determined by a methodology put forward in this study based on ATR-FTIR spectroscopy. Further organoleptic testing performed with the encapsulates in a model food product, i.e., milk powder, suggested that the lowest organoleptic impact was seen for the encapsulates made from whey protein concentrate. The obtained results demonstrate the potential of the EAPG technology using whey protein concentrate as the encapsulating matrix, for the stabilization of sensitive bioactive compounds.

19.
Blood ; 134(16): 1323-1336, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31492675

RESUMO

The polycomb repressive complex 2, with core components EZH2, SUZ12, and EED, is responsible for writing histone 3 lysine 27 trimethylation histone marks associated with gene repression. Analysis of sequence data from 419 T-cell acute lymphoblastic leukemia (T-ALL) cases demonstrated a significant association between SUZ12 and JAK3 mutations. Here we show that CRISPR/Cas9-mediated inactivation of Suz12 cooperates with mutant JAK3 to drive T-cell transformation and T-ALL development. Gene expression profiling integrated with ChIP-seq and ATAC-seq data established that inactivation of Suz12 led to increased PI3K/mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), and WNT signaling. Moreover, a drug screen revealed that JAK3/Suz12 mutant leukemia cells were more sensitive to histone deacetylase (HDAC)6 inhibition than JAK3 mutant leukemia cells. Among the broad genome and gene expression changes observed on Suz12 inactivation, our integrated analysis identified the PI3K/mTOR, VEGF/VEGF receptor, and HDAC6/HSP90 pathways as specific vulnerabilities in T-ALL cells with combined JAK3 and SUZ12 mutations.


Assuntos
Transformação Celular Neoplásica/genética , Complexo Repressor Polycomb 2/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transdução de Sinais/fisiologia , Animais , Humanos , Janus Quinase 3/genética , Camundongos , Mutação , Proteínas de Neoplasias , Fatores de Transcrição
20.
Stem Cell Reports ; 13(3): 515-529, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31402335

RESUMO

In vertebrates, GATA2 is a master regulator of hematopoiesis and is expressed throughout embryo development and in adult life. Although the essential role of GATA2 in mouse hematopoiesis is well established, its involvement during early human hematopoietic development is not clear. By combining time-controlled overexpression of GATA2 with genetic knockout experiments, we found that GATA2, at the mesoderm specification stage, promotes the generation of hemogenic endothelial progenitors and their further differentiation to hematopoietic progenitor cells, and negatively regulates cardiac differentiation. Surprisingly, genome-wide transcriptional and chromatin immunoprecipitation analysis showed that GATA2 bound to regulatory regions, and repressed the expression of cardiac development-related genes. Moreover, genes important for hematopoietic differentiation were upregulated by GATA2 in a mostly indirect manner. Collectively, our data reveal a hitherto unrecognized role of GATA2 as a repressor of cardiac fates, and highlight the importance of coordinating the specification and repression of alternative cell fates.


Assuntos
Fator de Transcrição GATA2/metabolismo , Hematopoese , Mesoderma/metabolismo , Diferenciação Celular , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesoderma/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA