Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15085, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956222

RESUMO

Obesity poses significant challenges, necessitating comprehensive strategies for effective intervention. Bariatric Surgery (BS) has emerged as a crucial therapeutic approach, demonstrating success in weight loss and comorbidity improvement. This study aimed to evaluate the outcomes of BS in a cohort of 48 Uruguayan patients and investigate the interplay between BS and clinical and metabolic features, with a specific focus on FSTL1, an emerging biomarker associated with obesity and inflammation. We quantitatively analyzed BS outcomes and constructed linear models to identify variables impacting BS success. The study revealed the effectiveness of BS in improving metabolic and clinical parameters. Importantly, variables correlating with BS success were identified, with higher pre-surgical FSTL1 levels associated with an increased effect of BS on BMI reduction. FSTL1 levels were measured from patient plasma using an ELISA kit pre-surgery and six months after. This research, despite limitations of a small sample size and limited follow-up time, contributes valuable insights into understanding and predicting the success of BS, highlighting the potential role of FSTL1 as a useful biomarker in obesity.


Assuntos
Cirurgia Bariátrica , Biomarcadores , Proteínas Relacionadas à Folistatina , Obesidade , Humanos , Proteínas Relacionadas à Folistatina/sangue , Proteínas Relacionadas à Folistatina/metabolismo , Feminino , Masculino , Cirurgia Bariátrica/métodos , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Obesidade/cirurgia , Obesidade/metabolismo , Uruguai/epidemiologia , Estudos de Coortes , Redução de Peso , Resultado do Tratamento , Índice de Massa Corporal
2.
Sci Rep ; 9(1): 14381, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591441

RESUMO

The protein Deleted in Breast Cancer-1 is a regulator of several transcription factors and epigenetic regulators, including HDAC3, Rev-erb-alpha, PARP1 and SIRT1. It is well known that DBC1 regulates its targets, including SIRT1, by protein-protein interaction. However, little is known about how DBC1 biological activity is regulated. In this work, we show that in quiescent cells DBC1 is proteolytically cleaved, producing a protein (DN-DBC1) that misses the S1-like domain and no longer binds to SIRT1. DN-DBC1 is also found in vivo in mouse and human tissues. Interestingly, DN-DBC1 is cleared once quiescent cells re-enter to the cell cycle. Using a model of liver regeneration after partial hepatectomy, we found that DN-DBC1 is down-regulated in vivo during regeneration. In fact, WT mice show a decrease in SIRT1 activity during liver regeneration, coincidentally with DN-DBC1 downregulation and the appearance of full length DBC1. This effect on SIRT1 activity was not observed in DBC1 KO mice. Finally, we found that DBC1 KO mice have altered cell cycle progression and liver regeneration after partial hepatectomy, suggesting that DBC1/DN-DBC1 transitions play a role in normal cell cycle progression in vivo after cells leave quiescence. We propose that quiescent cells express DN-DBC1, which either replaces or coexist with the full-length protein, and that restoring of DBC1 is required for normal cell cycle progression in vitro and in vivo. Our results describe for the first time in vivo a naturally occurring form of DBC1, which does not bind SIRT1 and is dynamically regulated, thus contributing to redefine the knowledge about its function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Técnicas de Inativação de Genes , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ciclo Celular/genética , Humanos , Regeneração Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Ligação Proteica/genética , Domínios Proteicos , Proteólise , Sirtuína 1/metabolismo
3.
J Signal Transduct ; 2011: 742372, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21637378

RESUMO

Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase) is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design.

4.
PLoS One ; 6(4): e19296, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21541291

RESUMO

Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.


Assuntos
Coanoflagelados/citologia , Coanoflagelados/enzimologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Ligantes , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
5.
J Biol Chem ; 285(14): 10605-15, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20110370

RESUMO

Ack1 is a nonreceptor tyrosine kinase that participates in tumorigenesis, cell survival, and migration. Relatively little is known about the mechanisms that regulate Ack1 activity. Recently, four somatic missense mutations of Ack1 were identified in cancer tissue samples, but the effects on Ack1 activity, and function have not been described. These mutations occur in the N-terminal region, the C-lobe of the kinase domain, and the SH3 domain. Here, we show that the cancer-associated mutations increase Ack1 autophosphorylation in mammalian cells without affecting localization and increase Ack1 activity in immune complex kinase assays. The cancer-associated mutations potentiate the ability of Ack1 to promote proliferation and migration, suggesting that point mutation is a mechanism for Ack1 deregulation. We propose that the C-terminal Mig6 homology region (MHR) (residues 802-990) participates in inhibitory intramolecular interactions. The isolated kinase domain of Ack1 interacts directly with the MHR, and the cancer-associated E346K mutation prevents binding. Likewise, mutation of a key hydrophobic residue in the MHR (Phe(820)) prevents the MHR-kinase interaction, activates Ack1, and increases cell migration. Thus, the cancer-associated mutation E346K appears to destabilize an autoinhibited conformation of Ack1, leading to constitutively high Ack1 activity.


Assuntos
Proliferação de Células , Mutação/genética , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Adesão Celular , Movimento Celular , Chlorocebus aethiops , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Neoplasias/patologia , Fosforilação , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Frações Subcelulares , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA