RESUMO
The contribution of deubiquitylating enzymes (DUBs) to ß-Catenin stabilization in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, and by using an unbiassed screen, we discovered that the DUB USP10 stabilizes ß-Catenin specifically in APC-truncated CRC in vitro and in vivo. Mechanistic studies, including in vitro binding together with computational modelling, revealed that USP10 binding to ß-Catenin is mediated via the unstructured N-terminus of USP10 and is outcompeted by intact APC, favouring ß-catenin degradation. However, in APC-truncated cancer cells USP10 binds to ß-catenin, increasing its stability which is critical for maintaining an undifferentiated tumour identity. Elimination of USP10 reduces the expression of WNT and stem cell signatures and induces the expression of differentiation genes. Remarkably, silencing of USP10 in murine and patient-derived CRC organoids established that it is essential for NOTUM signalling and the APC super competitor-phenotype, reducing tumorigenic properties of APC-truncated CRC. These findings are clinically relevant as patient-derived organoids are highly dependent on USP10, and abundance of USP10 correlates with poorer prognosis of CRC patients. Our findings reveal, therefore, a role for USP10 in CRC cell identity, stemness, and tumorigenic growth by stabilising ß-Catenin, leading to aberrant WNT signalling and degradation resistant tumours. Thus, USP10 emerges as a unique therapeutic target in APC truncated CRC.
RESUMO
The autophagy-lysosome system directs the degradation of a wide variety of cargo and is also involved in tumor progression. Here, we show that the immunity-related GTPase family Q protein (IRGQ), an uncharacterized protein to date, acts in the quality control of major histocompatibility complex class I (MHC class I) molecules. IRGQ directs misfolded MHC class I toward lysosomal degradation through its binding mode to GABARAPL2 and LC3B. In the absence of IRGQ, free MHC class I heavy chains do not only accumulate in the cell but are also transported to the cell surface, thereby promoting an immune response. Mice and human patients suffering from hepatocellular carcinoma show improved survival rates with reduced IRGQ levels due to increased reactivity of CD8+ T cells toward IRGQ knockout tumor cells. Thus, we reveal IRGQ as a regulator of MHC class I quality control, mediating tumor immune evasion.
RESUMO
Acinetobacter baumannii is a pathogenic and multidrug-resistant Gram-negative bacterium that causes severe nosocomial infections. To better understand the mechanism of pathogenesis, we compare the proteomes of uninfected and infected human cells, revealing that transcription factor FOS is the host protein most strongly induced by A. baumannii infection. Pharmacological inhibition of FOS reduces the cytotoxicity of A. baumannii in cell-based models, and similar results are also observed in a mouse infection model. A. baumannii outer membrane vesicles (OMVs) are shown to activate the aryl hydrocarbon receptor (AHR) of host cells by inducing the host enzyme tryptophan-2,3-dioxygenase (TDO), producing the ligand kynurenine, which binds AHR. Following ligand binding, AHR is a direct transcriptional activator of the FOS gene. We propose that A. baumannii infection impacts the host tryptophan metabolism and promotes AHR- and FOS-mediated cytotoxicity of infected cells.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Cinurenina , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Animais , Camundongos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/metabolismo , Cinurenina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Triptofano/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Interações Hospedeiro-PatógenoRESUMO
SREBP2 is a master regulator of the mevalonate pathway (MVP), a biosynthetic process that drives the synthesis of dolichol, heme A, ubiquinone and cholesterol and also provides substrates for protein prenylation. Here, we identify SREBP2 as a novel substrate for USP28, a deubiquitinating enzyme that is frequently upregulated in squamous cancers. Our results show that silencing of USP28 reduces expression of MVP enzymes and lowers metabolic flux into this pathway. We also show that USP28 binds to mature SREBP2, leading to its deubiquitination and stabilisation. USP28 depletion rendered cancer cells highly sensitive to MVP inhibition by statins, which was rescued by the addition of geranyl-geranyl pyrophosphate. Analysis of human tissue microarrays revealed elevated expression of USP28, SREBP2 and MVP enzymes in lung squamous cell carcinoma (LSCC) compared to lung adenocarcinoma (LADC). Moreover, CRISPR/Cas-mediated deletion of SREBP2 selectively attenuated tumour growth in a KRas/p53/LKB1 mutant mouse model of lung cancer. Finally, we demonstrate that statins synergise with a dual USP28/25 inhibitor to reduce viability of SCC cells. Our findings suggest that combinatorial targeting of MVP and USP28 could be a therapeutic strategy for the treatment of squamous cell carcinomas.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Ácido Mevalônico/metabolismo , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Ubiquitina Tiolesterase/metabolismoRESUMO
In healthy vessels, endothelial cells maintain a stable, differentiated, and growth-arrested phenotype for years. Upon injury, a rapid phenotypic switch facilitates proliferation to restore tissue perfusion. Here we report the identification of the endothelial cell-enriched long non-coding RNA (lncRNA) PCAT19, which contributes to the proliferative switch and acts as a safeguard for the endothelial genome. PCAT19 is enriched in confluent, quiescent endothelial cells and binds to the full replication protein A (RPA) complex in a DNA damage- and cell-cycle-related manner. Our results suggest that PCAT19 limits the phosphorylation of RPA2, primarily on the serine 33 (S33) residue, and thereby facilitates an appropriate DNA damage response while slowing cell cycle progression. Reduction in PCAT19 levels in response to either loss of cell contacts or knockdown promotes endothelial proliferation and angiogenesis. Collectively, PCAT19 acts as a dynamic guardian of the endothelial genome and facilitates rapid switching from quiescence to proliferation.
Assuntos
RNA Longo não Codificante , Fosforilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , DNA/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismoRESUMO
Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto-oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl-terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto-oncogenes such as c-JUN, c-MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed-forward loop, driven by increased amounts of oncogenic transcription factors such as c-MYC and c-JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small-molecule inhibitor resets the proteome of transformed cells towards a 'premalignant' state, and its inhibition synergizes with clinically established compounds used to target EGFRL858R -, BRAFV600E - or PI3KH1047R -driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early-stage lung tumours, and the observed synergism with current standard-of-care inhibitors holds the potential for improved targeting of established tumours.
Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas B-raf , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Receptores ErbB/genética , Humanos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição , Ubiquitina Tiolesterase/genéticaRESUMO
BACKGROUND: Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. RESULTS: We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. CONCLUSION: PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.
RESUMO
Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.
Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacologia , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/metabolismoRESUMO
Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.
Assuntos
Carcinoma de Células Escamosas/genética , Genes Supressores de Tumor , Oncogenes , Ubiquitina Tiolesterase/genética , Animais , Carcinoma de Células Escamosas/terapia , Humanos , Modelos Moleculares , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismoRESUMO
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.
Assuntos
Autofagia/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas de Inativação de Genes/métodos , Redes Reguladoras de Genes/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Carcinoma de Células Escamosas/mortalidade , Proliferação de Células/genética , Sobrevivência Celular/genética , Bases de Dados Genéticas , Biblioteca Gênica , Genes Essenciais , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/mortalidade , Modelos Genéticos , RNA Guia de Cinetoplastídeos , RNA-Seq , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53 fl/fl :lsl-KRas G12D/wt . Developing tumors were indistinguishable from Trp53 fl/fl :lsl-KRas G12D/ wt -derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.
RESUMO
The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome-mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells. CRISPR/Cas9-engineered in vivo mouse models establish that endogenous USP28 is strictly required for both induction and maintenance of lung SCC. Our data strongly suggest that targeting ∆Np63 abundance via inhibition of USP28 is a promising strategy for the treatment of SCC tumours.