Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Stem Cell Res ; 68: 103056, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863131

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal length of CAG repeats in the gene HTT, leading to an elongated poly-glutamine (poly-Q) sequence in huntingtin (HTT). We used non-integrative Sendai virus to reprogram fibroblasts from a patient with juvenile onset HD to induced pluripotent stem cells (iPSCs). Reprogrammed iPSCs expressed pluripotency-associated markers, exhibited a normal karyotype, and following directed differentiation generated cell types belonging to the three germ layers. PCR analysis and sequencing confirmed the HD patient-derived iPSC line had one normal HTT allele and one with elongated CAG repeats, equivalent to ≥180Q.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Peptídeos/metabolismo , Linhagem Celular , Proteína Huntingtina/genética
2.
J Med Genet ; 59(5): 453-461, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34059554

RESUMO

BACKGROUND: Minichromosomal maintenance (MCM) complex components 2, 4, 5 and 6 have been linked to human disease with phenotypes including microcephaly and intellectual disability. The MCM complex has DNA helicase activity and is thereby important for the initiation and elongation of the replication fork and highly expressed in proliferating neural stem cells. METHODS: Whole-exome sequencing was applied to identify the genetic cause underlying the neurodevelopmental disease of the index family. The expression pattern of Mcm7 was characterised by performing quantitative real-time PCR, in situ hybridisation and immunostaining. To prove the disease-causative nature of identified MCM7, a proof-of-principle experiment was performed. RESULTS: We reported that the homozygous missense variant c.793G>A/p.A265T (g.7:99695841C>T, NM_005916.4) in MCM7 was associated with autosomal recessive primary microcephaly (MCPH), severe intellectual disability and behavioural abnormalities in a consanguineous pedigree with three affected individuals. We found concordance between the spatiotemporal expression pattern of Mcm7 in mice and a proliferative state: Mcm7 expression was higher in early mouse developmental stages and in proliferative zones of the brain. Accordingly, Mcm7/MCM7 levels were detectable particularly in undifferentiated mouse embryonal stem cells and human induced pluripotent stem cells compared with differentiated neurons. We further demonstrate that the downregulation of Mcm7 in mouse neuroblastoma cells reduces cell viability and proliferation, and, as a proof-of-concept, that this is counterbalanced by the overexpression of wild-type but not mutant MCM7. CONCLUSION: We report mutations of MCM7 as a novel cause of autosomal recessive MCPH and intellectual disability and highlight the crucial function of MCM7 in nervous system development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Animais , Humanos , Deficiência Intelectual/genética , Camundongos , Microcefalia/complicações , Microcefalia/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Mutação/genética , Linhagem
3.
Glia ; 66(1): 145-160, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28940767

RESUMO

The generation of new oligodendrocytes is essential for adult brain repair in diseases such as multiple sclerosis. We previously identified the multifunctional p57kip2 protein as a negative regulator of myelinating glial cell differentiation and as an intrinsic switch of glial fate decision in adult neural stem cells (aNSCs). In oligodendroglial precursor cells (OPCs), p57kip2 protein nuclear exclusion was recently found to be rate limiting for differentiation to proceed. Furthermore, stimulation with mesenchymal stem cell (MSC)-derived factors enhanced oligodendrogenesis by yet unknown mechanisms. To elucidate this instructive interaction, we investigated to what degree MSC secreted factors are species dependent, whether hippocampal aNSCs respond equally well to such stimuli, whether apart from oligodendroglial differentiation also tissue integration and axonal wrapping can be promoted and whether the oligodendrogenic effect involved subcellular translocation of p57kip2. We found that CC1 positive oligodendrocytes within the hilus express nuclear p57kip2 protein and that MSC dependent stimulation of cultured hippocampal aNSCs was not accompanied by nuclear p57kip2 exclusion as observed for parenchymal OPCs after spontaneous differentiation. Stimulation with human MSC factors was observed to equally promote rat stem cell oligodendrogenesis, axonal wrapping and tissue integration. As forced nuclear shuttling of p57kip2 led to decreased CNPase- but elevated GFAP expression levels, this indicates heterogenic oligodendroglial mechanisms occurring between OPCs and aNSCs. We also show for the first time that dominant pro-oligodendroglial factors derived from human fetal MSCs can instruct human induced pluripotent stem cell-derived NSCs to differentiate into O4 positive oligodendrocytes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Hipocampo/citologia , Células-Tronco Neurais/química , Oligodendroglia/efeitos dos fármacos , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Animais Recém-Nascidos , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Feminino , Feto , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Oligodendroglia/fisiologia , Ratos , Ratos Wistar
4.
Oncotarget ; 7(6): 6693-710, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26760764

RESUMO

Despite the approval of numerous molecular targeted drugs, long-term antiproliferative efficacy is rarely achieved and therapy resistance remains a central obstacle of cancer care. Combined inhibition of multiple cancer-driving pathways promises to improve antiproliferative efficacy. HIF-1 is a driver of gastric cancer and considered to be an attractive target for therapy. We noted that gastric cancer cells are able to functionally compensate the stable loss of HIF-1α. Via transcriptomics we identified a group of upregulated genes in HIF-1α-deficient cells and hypothesized that these genes confer survival upon HIF-1α loss. Strikingly, simultaneous knock-down of HIF-1α and Annexin A1 (ANXA1), one of the identified genes, resulted in complete cessation of proliferation. Using stable isotope-resolved metabolomics, oxidative and reductive glutamine metabolism was found to be significantly impaired in HIF-1α/ANXA1-deficient cells, potentially explaining the proliferation defect. In summary, we present a conceptually novel application of stable gene inactivation enabling in-depth deconstruction of resistance mechanisms. In theory, this experimental approach is applicable to any cancer-driving gene or pathway and promises to identify various new targets for combination therapies.


Assuntos
Anexina A1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Anexina A1/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
5.
BMC Genomics ; 16: 84, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25765079

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish. RESULTS: In this study, employing iPS technology, we derived and characterized iPSCs from dermal fibroblasts of an 82-year-old female patient affected by sporadic AD. The AD-iPSCs were differentiated into neuronal cells, in order to generate disease-specific protein association networks modeling the molecular pathology on the transcriptome level of AD, to analyse the reflection of the disease phenotype in gene expression in AD-iPS neuronal cells, in particular in the ubiquitin-proteasome system (UPS), and to address expression of typical AD proteins. We detected the expression of p-tau and GSK3B, a physiological kinase of tau, in neuronal cells derived from AD-iPSCs. Treatment of neuronal cells differentiated from AD-iPSCs with an inhibitor of γ-secretase resulted in the down-regulation of p-tau. Transcriptome analysis of AD-iPS derived neuronal cells revealed significant changes in the expression of genes associated with AD and with the constitutive as well as the inducible subunits of the proteasome complex. The neuronal cells expressed numerous genes associated with sub-regions within the brain thus suggesting the usefulness of our in-vitro model. Moreover, an AD-related protein interaction network composed of APP and GSK3B among others could be generated using neuronal cells differentiated from two AD-iPS cell lines. CONCLUSIONS: Our study demonstrates how an iPSC-based model system could represent (i) a tool to study the underlying molecular basis of sporadic AD, (ii) a platform for drug screening and toxicology studies which might unveil novel therapeutic avenues for this debilitating neuronal disorder.


Assuntos
Doença de Alzheimer/genética , Redes Reguladoras de Genes , Neurônios/metabolismo , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Benzodiazepinonas/farmacologia , Linhagem Celular , Análise por Conglomerados , Feminino , Fibroblastos/citologia , Redes Reguladoras de Genes/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Doadores de Tecidos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Biol Rev Camb Philos Soc ; 90(3): 927-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25243985

RESUMO

The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner-Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the 'Warburg effect' of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.


Assuntos
Metabolismo/fisiologia , Via de Pentose Fosfato/fisiologia , Humanos , Doenças Metabólicas/fisiopatologia , Via de Pentose Fosfato/genética
7.
Stem Cells ; 32(2): 364-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123565

RESUMO

Reprogramming somatic cells to a pluripotent state drastically reconfigures the cellular anabolic requirements, thus potentially inducing cancer-like metabolic transformation. Accordingly, we and others previously showed that somatic mitochondria and bioenergetics are extensively remodeled upon derivation of induced pluripotent stem cells (iPSCs), as the cells transit from oxidative to glycolytic metabolism. In the attempt to identify possible regulatory mechanisms underlying this metabolic restructuring, we investigated the contributing role of hypoxia-inducible factor one alpha (HIF1α), a master regulator of energy metabolism, in the induction and maintenance of pluripotency. We discovered that the ablation of HIF1α function in dermal fibroblasts dramatically hampers reprogramming efficiency, while small molecule-based activation of HIF1α significantly improves cell fate conversion. Transcriptional and bioenergetic analysis during reprogramming initiation indicated that the transduction of the four factors is sufficient to upregulate the HIF1α target pyruvate dehydrogenase kinase (PDK) one and set in motion the glycolytic shift. However, additional HIF1α activation appears critical in the early upregulation of other HIF1α-associated metabolic regulators, including PDK3 and pyruvate kinase (PK) isoform M2 (PKM2), resulting in increased glycolysis and enhanced reprogramming. Accordingly, elevated levels of PDK1, PDK3, and PKM2 and reduced PK activity could be observed in iPSCs and human embryonic stem cells in the undifferentiated state. Overall, the findings suggest that the early induction of HIF1α targets may be instrumental in iPSC derivation via the activation of a glycolytic program. These findings implicate the HIF1α pathway as an enabling regulator of cellular reprogramming.


Assuntos
Proteínas de Transporte/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Hormônios Tireóideos/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Linhagem da Célula , Reprogramação Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
8.
Stem Cell Rev Rep ; 9(1): 32-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22529014

RESUMO

Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34(-), CD45(-), CD14(-), CD31(-), HLA-DR(-), CD13(+), CD29(+), CD44(+), CD73(+), CD90(+),and CD105(+). When exposed to in vitro differentiation, hATSCs, hASSCs and hNSSCs exhibited quantitative differences in their ability to differentiate into adipocytes and to osteoblastic cells. Using a microarray-based approach we have unveiled a common MSC molecular signature composed of 33 CD markers including known MSC markers and several novel markers e.g. CD165, CD276, and CD82. However, significant differences in the molecular phenotype between these different stromal cell populations were observed suggesting ontological and functional differences. In conclusion, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Pele/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Fosfatase Alcalina/análise , Antígenos CD/biossíntese , Biomarcadores , Medula Óssea , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Fenótipo
9.
PLoS One ; 6(11): e27352, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110631

RESUMO

Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders.


Assuntos
Envelhecimento/genética , Morte Celular/genética , Aberrações Cromossômicas , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Doadores de Tecidos , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Reprogramação Celular , Feminino , Fibroblastos/citologia , Instabilidade Genômica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Cariótipo , Mitocôndrias/patologia , Estresse Oxidativo/genética , Transdução de Sinais/genética
10.
PLoS One ; 6(8): e24351, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21909390

RESUMO

Somatic cells can be reprogrammed to induced pluripotent stem cells by over-expression of OCT4, SOX2, KLF4 and c-MYC (OSKM). With the aim of unveiling the early mechanisms underlying the induction of pluripotency, we have analyzed transcriptional profiles at 24, 48 and 72 hours post-transduction of OSKM into human foreskin fibroblasts. Experiments confirmed that upon viral transduction, the immediate response is innate immunity, which induces free radical generation, oxidative DNA damage, p53 activation, senescence, and apoptosis, ultimately leading to a reduction in the reprogramming efficiency. Conversely, nucleofection of OSKM plasmids does not elicit the same cellular stress, suggesting viral response as an early reprogramming roadblock. Additional initiation events include the activation of surface markers associated with pluripotency and the suppression of epithelial-to-mesenchymal transition. Furthermore, reconstruction of an OSKM interaction network highlights intermediate path nodes as candidates for improvement intervention. Overall, the results suggest three strategies to improve reprogramming efficiency employing: 1) anti-inflammatory modulation of innate immune response, 2) pre-selection of cells expressing pluripotency-associated surface antigens, 3) activation of specific interaction paths that amplify the pluripotency signal.


Assuntos
Reprogramação Celular/genética , Redes Reguladoras de Genes/genética , Fatores de Transcrição Kruppel-Like/genética , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1/genética , Animais , Senescência Celular/genética , Transição Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Modelos Biológicos , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroviridae/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Tempo , Transcrição Gênica , Transcriptoma , Transdução Genética , Transfecção , Proteína Supressora de Tumor p53/metabolismo
11.
BMC Genomics ; 12: 1-13, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21729306

RESUMO

BACKGROUND: Oct4 is a key factor of an expanded transcriptional network (Oct4-TN) that governs pluripotency and self-renewal in embryonic stem cells (ESCs) and in the inner cell mass from which ESCs are derived. A pending question is whether the establishment of the Oct4-TN initiates during oogenesis or after fertilisation. To this regard, recent evidence has shown that Oct4 controls a poorly known Oct4-TN central to the acquisition of the mouse egg developmental competence. The aim of this study was to investigate the identity and extension of this maternal Oct4-TN, as much as whether its presence is circumscribed to the egg or maintained beyond fertilisation. RESULTS: By comparing the genome-wide transcriptional profile of developmentally competent eggs that express the OCT4 protein to that of developmentally incompetent eggs in which OCT4 is down-regulated, we unveiled a maternal Oct4-TN of 182 genes. Eighty of these transcripts escape post-fertilisation degradation and represent the maternal Oct4-TN inheritance that is passed on to the 2-cell embryo. Most of these 80 genes are expressed in cancer cells and 37 are notable companions of the Oct4 transcriptome in ESCs. CONCLUSIONS: These results provide, for the first time, a developmental link between eggs, early preimplantation embryos and ESCs, indicating that the molecular signature that characterises the ESCs identity is rooted in oogenesis. Also, they contribute a useful resource to further study the mechanisms of Oct4 function and regulation during the maternal-to-embryo transition and to explore the link between the regulation of pluripotency and the acquisition of de-differentiation in cancer cells.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Fator 3 de Transcrição de Octâmero/genética , Oócitos/metabolismo , Animais , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Camundongos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Oócitos/crescimento & desenvolvimento
12.
Stem Cell Rev Rep ; 6(2): 282-96, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20336394

RESUMO

Human embryonic stem (ES) cells possess an enormous potential for applications in regenerative medicine. However, these cells have several inevitable hurdles limiting their clinical applications, such as transplant rejection and embryo destruction. A milestone recently achieved was the derivation of induced pluripotent stem (iPS) cells by over-expressing combinations of defined transcription factors, namely, OCT4, SOX2, NANOG, and LIN28 or OCT4, SOX2, KLF4, and c-MYC. Human iPS cells exhibit many characteristics identical to those of inner cell mass-derived ES cells. Here, we summarize the generation of human fibroblast-derived iPS cells and discuss the promises and limitations of their use. In addition, by utilising numerous published transcriptome datasets related to ES cells, fibroblast-derived iPS cells, partially induced pluripotent stem cells (PiPSC) and wild type fibroblasts, we reveal similarities (self-renewal signature) and differences (donor cell-type and PiPSC signatures) in genes and associated signaling pathways operative in the induction of pluripotency in fibroblasts. In particular, we highlight that induction of ground state pluripotency is also favoured by the inhibition of epithelial mesenchymal transition (EMT) and hence the induction of mesenchymal epithelial transition (MET). We anticipate that these findings might aid in the establishment of more efficient protocols for inducing pluripotency in somatic cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Fator 4 Semelhante a Kruppel , Mesoderma/metabolismo , Mesoderma/patologia
13.
PLoS One ; 5(12): e16092, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21209851

RESUMO

Recent data demonstrates that stem cells can exist in two morphologically, molecularly and functionally distinct pluripotent states; a naïve LIF-dependent pluripotent state which is represented by murine embryonic stem cells (mESCs) and an FGF-dependent primed pluripotent state represented by murine and rat epiblast stem cells (EpiSCs). We find that derivation of induced pluripotent stem cells (iPSCs) under EpiSC culture conditions yields FGF-dependent iPSCs from hereon called FGF-iPSCs) which, unexpectedly, display naïve ES-like/ICM properties. FGF-iPSCs display X-chromosome activation, multi-lineage differentiation, teratoma competence and chimera contribution in vivo. Our findings suggest that in 129 and Bl6 mouse strains, iPSCs can dominantly adopt a naive pluripotent state regardless of culture growth factor conditions. Characterization of the key molecular signalling pathways revealed FGF-iPSCs to depend on the Activin/Nodal and FGF pathways, while signalling through the JAK-STAT pathway is not required for FGF-iPS cell maintenance. Our findings suggest that in 129 and Bl6 mouse strains, iPSCs can dominantly adopt a naive pluripotent state regardless of culture growth factor conditions.


Assuntos
Técnicas de Cultura Embrionária , Células-Tronco Embrionárias/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Técnicas de Cultura de Células , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Retroviridae/genética , Especificidade da Espécie , Teratoma/genética , Cromossomo X
14.
Stem Cells Dev ; 18(5): 707-16, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18724799

RESUMO

Significant breakthroughs have been recently achieved in reprogramming somatic cells to a pluripotent embryonic state by the ectopic expression of specific transcription factors. One of the major drawbacks of reprogramming strategies lays in the low efficiency of the process. It is likely that the required complex epigenetic-remodeling events could be cell-type specific and more rational approaches to cell source selection might help to improve the outcome of the procedure. Because the use of somatic stem cells, and specifically neural stem cells (NSCs), as nuclear donors significantly increased the efficiency of somatic cell nuclear transfer, we aimed to determine whether genetically unmodified somatic NSCs could be more easily reprogrammed to pluripotency than unmodified mouse embryonic fibroblasts. Retroviral transduction of the factors Oct4, Sox2, Klf4, and c-Myc successfully reverted NSCs to a pluripotent embryonic stem cell-like state with a 2-fold efficiency increase, faster kinetic, and with a lower number of viral integrations. Quantification analysis of reprogramming-associated genes revealed that NSCs endogenously expressed high levels of Sox2 and c-Myc. Accordingly, NSCs could be successfully induced to pluripotency through the ectopic viral expression of the other two factors (Oct4 and Klf4). These findings suggest that endogenous expression of reprogramming genes could help the reprogramming process and somatic stem cells might be more prone to reprogramming due to their specific genetic background. Genetic-based somatic cell screening might provide essential information for the selection of alternative cell sources more suitable to direct reprogramming.


Assuntos
Reprogramação Celular/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/virologia , Células-Tronco/citologia , Teratoma/metabolismo , Teratoma/patologia , Integração Viral
15.
Aging Cell ; 6(5): 619-30, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17651460

RESUMO

Mitochondrial DNA (mtDNA) deletions occur sporadically in zygotic and somatic tissues and reach their highest concentration in substantia nigra. Previously, we noted the increase of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) transcript by microarray in multiple cells and tissues bearing deletions. In this work, we demonstrate that the induction of AMPK transcript is dependent on deletions by quantitative polymerase chain reaction, and also demonstrate a deficiency in adenosine triphosphate (ATP) synthesis in the same cells. Consistent with AMPK induction, its known targets SREBF1 (sterol regulatory element binding protein-1) and ATG12 were inhibited and induced, respectively. AMPK induction is known to decrease secretory processes in some cells, and the secretion of both osteoprotegerin (OPG) and fibronectin (FN) proteins to the extracellular space was significantly deficient. Deletions caused a defect in the adenosine diphosphate (ADP)-ribosylation factor-like 2 (ARL2) transcript, which is known to be important in secretion and interacts with protein phosphatase 2A (PP2A) and thus AMPK. The deletion-dependent dysfunctions occurred even in cells bearing less than 30% deletions, suggesting that the concept of a high biological 'threshold' for deletions should be further revised downward. The defects in ATP synthesis, induction of the AMPK and SREBF1 transcripts, and decreased expression of ARL2 and secretion of OPG and FN were recapitulated by low doses of rotenone, demonstrating that they were a specific consequence of electron transport chain inhibition. Thus, mtDNA deletions result in cellular energy depletion, which causes the induction of AMPK and its regulated targets, and inhibit secretion of some proteins. We integrate these observations into a pathophysiological model for how mitochondrial deletions cause disease.


Assuntos
DNA Mitocondrial/genética , Deleção de Genes , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Fatores de Ribosilação do ADP/genética , Proteínas Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Proteína 12 Relacionada à Autofagia , Linhagem Celular Tumoral , DNA Mitocondrial/metabolismo , Fibronectinas/metabolismo , Humanos , Complexos Multienzimáticos/genética , Osteoprotegerina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Rotenona/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
16.
Autophagy ; 3(4): 377-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17457038

RESUMO

Deletion mutations of mitochondrial DNA (mtDNA) accumulate somatically on a cell-by-cell basis with age, resulting in decreased cell function in muscle and substantia nigra. In osteosarcoma cells deletions incapacitate mitochondria and induce the autophagic transcript ATG12, which is involved in an early step of the mammalian autophagy pathway. We discuss here which consequences of mtDNA deletions could induce ATG12, and provide two new pieces of data. Our previous studies demonstrated that mtDNA deletions decreased mitochondrial ATP production and proteasomal function, induced the AMPK transcript (likely as a consequence of bioenergetic depletion), and decreased the intracellular concentration of 20 amino acids (possibly as a consequence of decreased proteasomal activity). Deletions eliminate essential tRNAs for mitochondrial protein synthesis, as well as essential components of mitochondrial multisubunit enzymes; therefore, the increased level of ATG12 could result from decreased bioenergetic function, increased oxidative damage, or decreased mitochondrial protein synthesis. However, the bioenergetic inhibitor rotenone does not induce ATG12. We show here that chloramphenicol, which inhibits mitochondrial protein synthesis, induces ATG12, and that mtDNA deletions result in an increased burden of oxidatively damaged protein. Thus, mtDNA deletions could induce ATG12 through a mechanism such as the following: deletions > mitochondrial protein synthesis inhibition or ROS > proteasome inhibition > amino acid depletion > ATG12.


Assuntos
Autofagia/fisiologia , Cloranfenicol/farmacologia , DNA Mitocondrial/genética , Deleção de Genes , Inibidores da Síntese de Proteínas/farmacologia , Proteínas/metabolismo , Proteína 12 Relacionada à Autofagia , DNA Mitocondrial/metabolismo , Humanos , Modelos Biológicos , Proteínas/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA