Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 8(7): e14329, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32281744

RESUMO

Fibrosis is a final common pathway for many causes of progressive chronic kidney disease (CKD). Arginine-glycine-aspartic acid (RGD)-binding integrins are important mediators of the pro-fibrotic response by activating latent TGF-ß at sites of injury and by providing myofibroblasts information about the composition and stiffness of the extracellular matrix. Therefore, blockade of RGD-binding integrins may have therapeutic potential for CKD. To test this idea, we used small-molecule peptidomimetics that potently inhibit a subset of RGD-binding integrins in a murine model of kidney fibrosis. Acute kidney injury leading to fibrosis was induced by administration of aristolochic acid. Continuous subcutaneous administration of CWHM-12, an RGD integrin antagonist, for 28 days improved kidney function as measured by serum creatinine. CWHM-12 significantly reduced Collagen 1 (Col1a1) mRNA expression and scar collagen deposition in the kidney. Protein and gene expression markers of activated myofibroblasts, a major source of extracellular matrix deposition in kidney fibrosis, were diminished by treatment. RNA sequencing revealed that inhibition of RGD integrins influenced multiple pathways that determine the outcome of the response to injury and of repair processes. A second RGD integrin antagonist, CWHM-680, administered once daily by oral gavage was also effective in ameliorating fibrosis. We conclude that targeting RGD integrins with such small-molecule antagonists is a promising therapeutic approach in fibrotic kidney disease.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Antineoplásicos/farmacologia , Integrinas/antagonistas & inibidores , Oligopeptídeos/antagonistas & inibidores , Peptidomiméticos/farmacologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Colágeno/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Fibrose/prevenção & controle , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
2.
J Clin Invest ; 129(7): 2745-2759, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31085833

RESUMO

Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.


Assuntos
Medula Óssea/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Integrina alfa4beta1 , Receptores de Interleucina-8B , Aloenxertos , Animais , Granulócitos/metabolismo , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA