Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2187: 1-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32770498

RESUMO

Lipid rafts are membrane areas characterized by the clustering of selected membrane lipids, as the result of their phase separation forming a liquid-ordered phase floating in the lipid-disordered bulk membrane. van Meer and Simons hypothesized the existence of lipid rafts to explain the differential composition of the apical and basolateral domains of polarized epithelial cells and proposed that association of given proteins with lipid rafts along the traffic route might represent an important mechanism for protein sorting. However, great attention was paid to the lipid raft theory after Simons and Ikonen highlighted the enrichment of several proteins involved in signal transduction in "detergent-insoluble, glycolipid-enriched complexes," and postulated that lipid rafts might serve as hubs in regulating intracellular signaling. Most notably, the feature of detergent-insolubility was incorporated in the definition of lipid rafts used in 1997 by these authors. "Lipid rafts" and "detergent-resistant membranes" became almost synonymous after the publication, in 1992, of the seminal paper by Brown and Rose, describing the separation of a low-density, Triton X-100-insoluble fraction from epithelial cells, enriched in GSL and apical GPI-anchored proteins and depleted of basolateral membrane marker proteins. This paper provided a working definition of lipid rafts and a putative biochemical method for their separation. More than 2000 papers have been published using "the Triton method." Evidences obtained by the use of alternative biochemical methods for the isolation of lipid rafts and of methods enabling to analyze the dynamics of lipid rafts in intact cells highlighted the several limitations of the Triton X-100 method. On the other hand, the main findings obtained by this method have not been confuted, and the method is still widely used.In this chapter, we will discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, with a special focus on neural cells and tissues.


Assuntos
Lipídeos de Membrana/química , Microdomínios da Membrana/química , Neurônios/química , Animais , Biomarcadores/química , Bovinos , Membrana Celular/química , Detergentes/química , Células Epiteliais/química , Camundongos , Octoxinol/química , Transporte Proteico/fisiologia , Ratos , Transdução de Sinais/fisiologia , Solubilidade
2.
Glycoconj J ; 37(3): 329-343, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32198666

RESUMO

It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and neuroprotective properties of GM1 ganglioside. In addition to this, differently from GM1, GM1-oligosaccharide is not taken up by the cells, remaining solubilized into the extracellular environment interacting with cell surface proteins. Those characteristics make GM1-oligosaccharide a good tool to study the properties of the endogenous GM1, avoiding to interfere with the ganglioside natural metabolic pathway. In this study, we show that GM1-oligosaccharide administered to mice cerebellar granule neurons by interacting with cell surface induces TrkA-MAP kinase pathway activation enhancing neuron clustering, arborization and networking. Accordingly, in the presence of GM1-oligosaccharide, neurons show a higher phosphorylation rate of FAK and Src proteins, the intracellular key regulators of neuronal motility. Moreover, treated cells express increased level of specific neuronal markers, suggesting an advanced stage of maturation compared to controls. In parallel, we found that in the presence of GM1-oligosaccharide, neurons accelerate the expression of complex gangliosides and reduce the level of the simplest ones, displaying the typical ganglioside pattern of mature neurons. Our data confirms the specific role of GM1 in neuronal differentiation and maturation, determined by its oligosaccharide portion. GM1-oligosacchairide interaction with cell surface receptors triggers the activation of intracellular biochemical pathways responsible for neuronal migration, dendrites emission and axon growth.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gangliosídeo G(M1)/farmacologia , Gangliosídeos/metabolismo , Neurônios/efeitos dos fármacos , Animais , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Feminino , Gangliosídeo G(M1)/análise , Gangliosídeo G(M1)/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptor trkA/metabolismo
3.
J Biol Chem ; 286(47): 40900-10, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21949119

RESUMO

The genetic (stable overexpression of sialyltransferase I, GM3 synthase) or pharmacological (selective pressure by N-(4-hydroxyphenyl)retinamide)) manipulation of A2780 human ovarian cancer cells allowed us to obtain clones characterized by higher GM3 synthase activity compared with wild-type cells. Clones with high GM3 synthase expression had elevated ganglioside levels, reduced in vitro cell motility, and enhanced expression of the membrane adaptor protein caveolin-1 with respect to wild-type cells. In high GM3 synthase-expressing clones, both depletion of gangliosides by treatment with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and silencing of caveolin-1 by siRNA were able to strongly increase in vitro cell motility. The motility of wild-type, low GM3 synthase-expressing cells was reduced in the presence of a Src inhibitor, and treatment of these cells with exogenous gangliosides, able to reduce their in vitro motility, inactivated c-Src kinase. Conversely, ganglioside depletion by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol treatment or caveolin-1 silencing in high GM3 synthase-expressing cells led to c-Src kinase activation. In high GM3 synthase-expressing cells, caveolin-1 was associated with sphingolipids, integrin receptor subunits, p130(CAS), and c-Src forming a Triton X-100-insoluble noncaveolar signaling complex. These data suggest a role for gangliosides in regulating tumor cell motility by affecting the function of a signaling complex organized by caveolin-1, responsible for Src inactivation downstream to integrin receptors, and imply that GM3 synthase is a key target for the regulation of cell motility in human ovarian carcinoma.


Assuntos
Caveolina 1/metabolismo , Movimento Celular , Gangliosídeos/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Proteína Tirosina Quinase CSK , Caveolina 1/deficiência , Caveolina 1/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Feminino , Inativação Gênica , Glucosiltransferases/antagonistas & inibidores , Humanos , Integrinas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Sialiltransferases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Quinases da Família src
5.
J Biol Chem ; 285(24): 18594-602, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20404323

RESUMO

A2780 human ovarian carcinoma cells respond to treatment with the synthetic retinoid N-(4-hydroxyphenyl)retinamide (HPR) with the production of dihydroceramide and with a concomitant reduction of cell proliferation and induction of apoptosis. The derived HPR-resistant clonal cell line, A2780/HPR, is less responsive to HPR in terms of dihydroceramide generation. In this report, we show that the production of sphingosine 1-phosphate (S1P) is significantly higher in A2780/HPR versus A2780 cells due to an increased sphingosine kinase (SK) activity and SK-1 mRNA and protein levels. Treatment of A2780 and A2780/HPR cells with a potent and highly selective pharmacological SK inhibitor effectively reduced S1P production and resulted in a marked reduction of cell proliferation. Moreover, A2780/HPR cells treated with a SK inhibitor were sensitized to the cytotoxic effect of HPR, due to an increased dihydroceramide production. On the other hand, the ectopic expression of SK-1 in A2780 cells was sufficient to induce HPR resistance in these cells. Challenge of A2780 and A2780/HPR cells with agonists and antagonists of S1P receptors had no effects on their sensitivity to the drug, suggesting that the role of SK in HPR resistance in these cells is not mediated by the S1P receptors. These data clearly demonstrate a role for SK in determining resistance to HPR in ovarian carcinoma cells, due to its effect in the regulation of intracellular ceramide/S1P ratio, which is critical in the control of cell death and proliferation.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fenretinida/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Lipídeos/química , Espectrometria de Massas/métodos , Modelos Biológicos , RNA Mensageiro/metabolismo
6.
Glycobiology ; 20(1): 62-77, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19759399

RESUMO

In this paper, we describe the effects of the expression of GM3 synthase at high levels in human ovarian carcinoma cells. Overexpression of GM3 synthase in A2780 cells consistently resulted in elevated ganglioside (GM3, GM2 and GD1a) levels. GM3 synthase overexpressing cells had a growth rate similar to wild-type cells, but showed a strongly reduced in vitro cell motility accompanied by reduced levels of the epithelial-mesenchymal transition marker alpha smooth muscle actin. A similar reduction in cell motility was observed upon treatment with exogenous GM3, GM2, and GM1, but not with GD1a. A photolabeling experiment using radioactive and photoactivable GM3 highlighted several proteins directly interacting with GM3. Among those, caveolin-1 was identified as a GM3-interacting protein in GM3 synthase overexpressing cells. Remarkably, caveolin-1 was markedly upregulated in GM3 synthase overexpressing cells. In addition, the motility of low GM3 synthase expressing cells was also reduced in the presence of a Src kinase inhibitor; on the other hand, higher levels of the inactive form of c-Src were detected in GM3 synthase overexpressing cells, associated with a ganglioside- and caveolin-rich detergent insoluble fraction.


Assuntos
Carcinoma/enzimologia , Caveolina 1/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/enzimologia , Sialiltransferases/biossíntese , Actinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Primers do DNA/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Esfingolipídeos/química , Quinases da Família src/metabolismo
7.
Biochim Biophys Acta ; 1780(3): 585-96, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17889439

RESUMO

Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas.


Assuntos
Caveolina 1/metabolismo , Membrana Celular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Esfingolipídeos/metabolismo , Humanos , Fenótipo
8.
J Neurochem ; 100(3): 708-19, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17176265

RESUMO

A reduction of 70% of the plasma membrane-associated sialidase Neu3 activity, due to a corresponding reduction of the enzyme expression by transducing cells with a short hairpin RNA encoding a sequence target (complementary messenger of mouse Neu3), caused neurite elongation in Neuro2a murine neuroblastoma cells. The differentiation process was accompanied in parallel by an increase of the acetylcholinesterase activity, a moderate increase of the c-Src expression and by the presence of the axonal marker tau protein on the neurites. The sphingolipid pattern and turnover in transduced and control cells were characterized by thin layer chromatography, mass spectrometry and metabolic radiolabeling after feeding cells with tritiated sphingosine. Control cells contained about 2 nmol of gangliosides/mg cell protein. GM2 was the main compound, followed by GD1a, GM3 and GM1. In Neu3 silenced cells, the total ganglioside content remained quite similar, but GM2 increased by 54%, GM3 remain constant, and GM1 and GD1a decreased by 66% and 50%, respectively. Within the organic phase sphingolipids, ceramide decreased by 50%, whereas the sphingomyelin content did not change in Neu3 silenced cells.


Assuntos
Diferenciação Celular/genética , Cones de Crescimento/metabolismo , Proteínas de Membrana/genética , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Neuraminidase/genética , Acetilcolinesterase/metabolismo , Animais , Linhagem Celular Tumoral , Ceramidas/metabolismo , Regulação para Baixo/genética , Gangliosídeos/metabolismo , Inativação Gênica/fisiologia , Cones de Crescimento/ultraestrutura , Camundongos , Sistema Nervoso/citologia , Neuroblastoma , RNA/genética , Esfingolipídeos/metabolismo , Transdução Genética , Quinases da Família src/metabolismo , Proteínas tau/metabolismo
9.
J Neurochem ; 95(3): 771-83, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16248888

RESUMO

We studied the membrane environment of cellular prion protein in primary cultured rat cerebellar neurons differentiated in vitro. In these cells, about 45% of total cellular prion protein (corresponding to a 35-fold enrichment) is associated with a low-density, sphingolipid- and cholesterol-enriched membrane fraction, that can be separated by flotation on sucrose gradient. Biotinylation experiments indicated that almost all prion protein recovered in this fraction was exposed at the cell surface. Prion protein was efficiently separated from this fraction by a monoclonal antibody immuno-separation procedure. Under conditions designed to preserve lipid-mediated membrane organization, several proteins were found in the prion protein-enriched membrane domains (i.e. the non-receptor tyrosine kinases Lyn and Fyn and the neuronal glycosylphosphatidylinositol-anchored protein Thy-1). The prion protein-rich membrane domains contained, as well, about 50% of the sphingolipids, cholesterol and phosphatidylcholine present in the sphingolipid-enriched membrane fraction. All main sphingolipids, including sphingomyelin, neutral glycosphingolipids and gangliosides, were similarly enriched in the prion protein-rich membrane domains. Thus, prion protein plasma membrane environment in differentiated neurons resulted to be a complex entity, whose integrity requires a network of lipid-mediated non-covalent interactions.


Assuntos
Lipídeos de Membrana/metabolismo , Neurônios/metabolismo , Príons/metabolismo , Animais , Fracionamento Celular , Membrana Celular/metabolismo , Células Cultivadas , Cerebelo/citologia , Detergentes , Gangliosídeos/metabolismo , Imunoprecipitação , Proteínas de Membrana/metabolismo , Neurônios/citologia , Glicoesfingolipídeos Neutros/metabolismo , Octoxinol , Óleos de Plantas , Polietilenoglicóis , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ratos Sprague-Dawley , Esfingomielinas/metabolismo , Quinases da Família src/metabolismo
10.
J Biol Chem ; 278(8): 5574-83, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12486134

RESUMO

In the present work, we studied the effects of fenretinide (N-(4-hydroxyphenyl)retinamide (HPR)), a hydroxyphenyl derivative of all-trans-retinoic acid, on sphingolipid metabolism and expression in human ovarian carcinoma A2780 cells. A2780 cells, which are sensitive to a pharmacologically achievable HPR concentration, become 10-fold more resistant after exposure to increasing HPR concentrations. Our results showed that HPR was able to induce a dose- and time-dependent increase in cellular ceramide levels in sensitive but not in resistant cells. This form of resistance in A2780 cells was not accompanied by the overexpression of multidrug resistance-specific proteins MDR1 P-glycoprotein and multidrug resistance-associated protein, whose mRNA levels did not differ in sensitive and resistant A2780 cells. HPR-resistant cells were characterized by an overall altered sphingolipid metabolism. The overall content in glycosphingolipids was similar in both cell types, but the expression of specific glycosphingolipids was different. Specifically, our findings indicated that glucosylceramide levels were similar in sensitive and resistant cells, but resistant cells were characterized by a 6-fold lower expression of lactosylceramide levels and by a 6-fold higher expression of ganglioside levels than sensitive cells. The main gangliosides from resistant A2780 cells were identified as GM3 and GM2. The possible metabolic mechanisms leading to this difference were investigated. Interestingly, the mRNA levels of glucosylceramide and lactosylceramide synthases were similar in sensitive and resistant cells, whereas GM3 synthase mRNA level and GM3 synthase activity were remarkably higher in resistant cells.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fenretinida/farmacologia , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transporte Biológico , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Neoplasias Ovarianas , Esfingosina/farmacocinética , Esfingosina/farmacologia , Células Tumorais Cultivadas
11.
Neurochem Res ; 27(7-8): 831-40, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12374220

RESUMO

In this paper, we show that caveolin-1 is abundantly present in a cell line of immortalized gonadotropin-releasing hormone-expressing neurons (GN11). In contrast to GN11, caveolin is undetectable in a cognate cell line of immortalized gonadotropin-releasing hormone-secreting neurons (GT1-7). These two cell lines are characterized by a radically different sphingolipid metabolism. After incubation in the presence of tracer amount of [1-(3)H]sphingosine, GN11 and GT1-7 neurons incorporated similar amounts of radioactivity. In GT1-7 neurons, [1-(3)H]sphingosine metabolism was markedly oriented toward the biosynthesis of complex sphingolipids. In fact, almost all the radioactivity in the lipid extracts from GT1-7 cells was associated with biosynthetic products (ceramide, sphingomyelin, and glycosphingolipids). In particular glycosphingolipids represented more than 65% of total lipid radioactivity in these cells, and the main glycosphingolipid was GM3 ganglioside (about 47% of total lipid radioactivity). In the case of GN11 neurons, a high portion of [1-(3)H]sphingosine underwent complete degradation, as indicated by the formation of high levels of radioactive phosphatidylethanolamine (about 23% of lipid radioactivity). Moreover, the main complex sphingolipid in GN11 neurons was not a glycolipid, but sphingomyelin (its level in these cells, about 54% of lipid radioactivity, was two-fold higher than in GT1-7). Glycolipids, gangliosides in particular, were present in low amount (9.5% of lipid radioactivity) if compared with the cognate GT1-7 cell line, and GM3 was almost absent in GN11 neurons. Despite the radical differences in ganglioside and caveolin content, from both cell types a membrane fraction similarly enriched in sphingolipids was prepared. In the case of GN11 cells, this fraction was also enriched in caveolin. The presence of caveolin or GM3 may correlate with different functional properties linked to the stage of neuronal maturation, since GN11 and GT1-7 are representative, respectively, of immature, migrating, and differentiated, postmigratory gonadotropin-releasing hormone-positive neurons.


Assuntos
Caveolinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Esfingolipídeos/metabolismo , Caveolina 1 , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Hipotálamo/citologia , Hipotálamo/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA