Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289905

RESUMO

Parkinson's disease (PD) is an aggressive and devastating age-related disorder. Although the causes are still unclear, several factors, including genetic and environmental, are involved. Except for symptomatic drugs, there are not, to date, any real cures for PD. For this purpose, it is necessary develop a model to better study this disease. Neuroblastoma cell line, SH-SY5Y, differentiated with retinoic acid represents a good in vitro model to explore PD, since it maintains growth cells to differentiated neurons. In the present study, SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that induces Parkinsonism, and the neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP), delivered by functionalized liposomes in a blood-brain barrier fluid dynamic model, were evaluated. We demonstrated PACAP neuroprotective effects when delivered by gH625-liposome on MPP+-damaged SH-SY5Y spheroids.

2.
Front Physiol ; 13: 932099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060696

RESUMO

The blood-brain barrier (BBB) selectively protects the central nervous system (CNS) from external insults, but its function can represent a limit for the passage of therapeutic molecules. Numerous in vitro models of the BBB have been realized in order to study the passage of drugs for neurodegenerative diseases, but these in vitro models are not very representative of the physiological conditions because of a limited supply of oxygen and nutrients due to static conditions. To avoid this phenomenon, we used a millifluidic bioreactor model that ensures a circulation of the medium and, therefore, of the nutrients, thanks to the continuous laminar flow. This dynamic model consists of a double-culture chamber separated by a membrane on which brain endothelial cells are cultured in order to evaluate the passage of the drug. Furthermore, in the lower chamber, SH-SY5Y were seeded as 3D spheroids to evaluate the drug passage through these cells. As nanodelivery system, we used liposomes functionalized with viral fusion peptide to evaluate the passage of a neuroprotective agent, pituitary adenylate cyclase-activating polypeptide (PACAP), through the dynamic in vitro model of the BBB. We showed that our nanodelivery system, made of functionalized liposomes and loaded with specific molecules, efficiently crosses the in vitro fluid-dynamic model of the BBB. Our findings represent an important step for further experimental investigations on PACAP administration as a therapeutic agent by an enhanced drug delivery system. Our results can improve the diffusion of good practice in neuroscience laboratories, helping to spread the 3R rules.

3.
Gen Comp Endocrinol ; 298: 113579, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777222

RESUMO

Spermatogenesis is an extraordinarily complex process, regulated by several factors, which leads to the differentiation of spermatogonia into spermatozoa. Among vertebrates, several reports have been focused on the lizard Podarcis sicula, a seasonal breeder and a good model for the study of reproductive processes. The goal of this review is to resume all the available data about systemic and above all local control factors involved in the control of P. sicula testicular activity. During the seasonal reproductive cycle, the variation of the expression levels of these factors determines significant variations that induce the activation or blocking of spermatogenesis. The data supplied in this review, in addition to analyze the current literature regarding the main actors of Podarcis sicula spermatogenesis, will hopefully provide a basic model that can be used for further studies on the intratesticular interaction between molecular factors that control spermatogenesis.


Assuntos
Lagartos/fisiologia , Espermatogênese/fisiologia , Animais , Masculino , Modelos Biológicos , Reprodução/fisiologia , Testículo/metabolismo
4.
Gen Comp Endocrinol ; 286: 113297, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604076

RESUMO

To enlighten the involvement of PACAP/receptors system in the control of mammal testis, we investigated the expression of PACAP and the localization of PACAP and its receptors PAC1, VPAC1, and VPAC2 in the testis of Mus musculus. By molecular and immunohistochemical investigations, we highlighted that PACAP and its receptors are widely represented in germ cells of Mus testis, particularly in spermatocytes I, spermatids, and spermatozoa, strongly suggesting their involvement in spermatogenesis process. Moreover, for the first time in the adult mouse testis we highlighted that PACAP is present within Leydig cells, as PACAP receptors, confirming its involvement in the control of steroidogenesis in mouse.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Testículo/metabolismo , Animais , Masculino , Camundongos
5.
J Exp Zool A Ecol Integr Physiol ; 331(7): 367-373, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145556

RESUMO

The aim of this paper is to assess, by real-time polymerase chain reaction and in situ hybridization, the expression of estrogen receptors ER1 and ER2 during the ovarian cycle of Mytilus galloprovincialis. By considering four phases of the reproductive cycle, that is stasis and previtellogenic stage (Stage 0), early vitellogenesis (Stage I), vitellogenesis (Stage II), full-grown oocyte (Stage III), our investigation demonstrates that the two receptors are differently expressed during the phases investigated of the ovarian cycle: ER1 reaches the highest level at Stage III, whereas ER2 reaches the highest level at Stage II, with ER2 always present at higher levels than ER1. The stage-dependent receptor expression was recorded within oocytes, follicle cells, and adipogranular cells. No ER1 and ER2 messenger RNAs (mRNAs) were found within vesicular cells. It is to be noted that the ER1 and ER2 expression within the growing oocytes, the follicular, and adipogranular cells overlaps with that of the mRNA for vitellogenin in the same cells, strongly suggesting that in Mytilus, as in vertebrates studied so far, the vitellogenin expression is under the control of estrogens.


Assuntos
Ciclo Menstrual , Mytilus/fisiologia , Receptores de Estrogênio/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Hibridização In Situ , Oócitos/metabolismo , Folículo Ovariano/metabolismo , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Estrogênio/genética , Vitelogênese
6.
Evol Dev ; 21(3): 145-156, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30791203

RESUMO

To evaluate the involvement of pituitary adenylate cyclase-activating polypeptide (PACAP)/receptors system in the control of testis activity, we have investigated the expression and localization of PACAP and the distribution of its receptors in the testis of mature samples of quail Coturnix coturnix, and we have performed a phylogenetic analysis of PACAP in birds. Using histological, molecular, and bioinformatics tools, we demonstrated that (a) PACAP messenger RNA shows a high sequence identity with that reported in other birds studied so far and in other vertebrates. Furthermore, we showed that purifying selection acts on PACAP; (b) the PACAP peptide is present only in Leydig cells, whereas its receptors are localized within both Leydig and germ cells; (c) the synthesis of PACAP does not take place in seminiferous tubules. The role of PACAP in the control of spermatogenesis and steroidogenesis in birds is discussed. Finally, we talk about the phylogenetic and evolutionary relationships between PACAP in birds and in other vertebrates.


Assuntos
Coturnix/genética , Evolução Molecular , Regulação Enzimológica da Expressão Gênica/fisiologia , Filogenia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Sequência de Aminoácidos , Animais , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Transporte Proteico , Testículo/enzimologia
7.
C R Biol ; 342(1-2): 18-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30709696

RESUMO

The purpose of the present study is to highlight the role of aromatase in the neuroendocrine control of the reproductive cycle of the male lizard Podarcis sicula during the three significant phases, i.e. the pre-reproductive, reproductive, and post-reproductive stages. Using immunohistochemical, biochemical, and hormonal tools, we have determined the localization and the activity of P450 aromatase (P450 aro) in the lizard's brain together with the determination of hormonal profile of sex steroids, i.e. testosterone and 17ß-estradiol. The present data demonstrated that the localization of P450 is shown in brain regions involved in the regulation of the reproductive behavior (medial septum, preoptic area, and hypothalamus). Its activity, as well as the intensity of the signal, is modified according to the period of reproduction, resulting in functional dynamic changes. P450 aro activity and signal intensity decrease in the pre-reproductive period and progressively increase during the reproductive stage until it reaches the maximum peak level at the post-reproductive phase. P450 aro determines a local estrogen synthesis, balancing the testosterone and estradiol levels, and therefore its role is crucial, since it plays an important role in the neuroendocrine/behavioral regulation of the reproductive processes in the male lizard P. sicula.


Assuntos
Aromatase/metabolismo , Encéfalo/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Reprodução/fisiologia , Animais , Estradiol/metabolismo , Lagartos/fisiologia , Masculino , Testosterona/metabolismo
8.
C R Biol ; 340(11-12): 492-498, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29126714

RESUMO

Steroidogenic Acute Regulatory protein (StAR), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), 17ß-hydroxysteroid dehydrogenase (17ß-HSD), 5α-Reductase (5α-Red), P450 aromatase are key enzymes involved in steroidogenesis. Recently, we showed the expression and the localization of P450 aromatase in Podarcis sicula testis during the different phases of the reproductive cycle, showing its involvement in the control of steroidogenesis, particularly in 17ß-estradiol synthesis. Now, we have investigated the presence and distribution of the other enzymes involved in steroidogenesis, i.e. StAR, 3ß-HSD, 17ß-HSD and 5α-Red, during three significant periods of the reproductive cycle: summer stasis (July-August), autumnal resumption (November) and reproductive period (May-June). We demonstrated for the first time that all these enzymes are always present in somatic cells (Leydig and Sertoli) and germ cells (spermatogonia, spermatocytes I and II, spermatids and spermatozoa) of Podarcis testis, mainly in spermatids and spermatozoa. The present results strongly suggest that in Podarcis testis both somatic and germ cells could be involved in local sex hormone synthesis and that 5α-Red and P450 could carry out a pivot role.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Estradiol/biossíntese , Lagartos , Masculino , Reprodução , Estações do Ano , Espermátides/metabolismo , Espermatozoides/metabolismo
9.
C R Biol ; 340(8): 379-385, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28784577

RESUMO

VIP and its receptors (VPACRs) are largely investigated in vertebrate testis, as well as their functions in the control of spermatogenesis and steroidogenesis. By contrast, a few data are available about the presence and role of VIP in the epididymis. The aim of the present paper was to investigate the localization of VIP and its receptors in the epididymis of two vertebrates: Podarcis sicula, a seasonal reproducer, and Rattus rattus, a continuous reproducer. By immunohystochemical investigation, we demonstrated for the first time that VIP and its receptors are widely represented in the epididymis of Podarcis sand Rattus; in particular in Podarcis, we showed that during the reproductive period, as well as in Rattus, VIP and its receptors are well represented in all the epithelial cells and the connective tissue of the epididymis; by contrast, during the non-reproductive period, VIP and its receptors are represented only in the connective tissue. The possible role of the VIP/VPACR system in the control of reproduction is discussed.


Assuntos
Epididimo/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Lagartos/fisiologia , Masculino , Ratos , Reprodução/fisiologia
10.
Diabetes ; 66(5): 1405-1418, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223285

RESUMO

Fatty liver, oxidative stress, and mitochondrial dysfunction are key pathophysiological features of insulin resistance and obesity. Butyrate, produced by fermentation in the large intestine by gut microbiota, and its synthetic derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide, FBA, have been demonstrated to be protective against insulin resistance and fatty liver. Here, hepatic mitochondria were identified as the main target of the beneficial effect of both butyrate-based compounds in reverting insulin resistance and fat accumulation in diet-induced obese mice. In particular, butyrate and FBA improved respiratory capacity and fatty acid oxidation, activated the AMPK-acetyl-CoA carboxylase pathway, and promoted inefficient metabolism, as shown by the increase in proton leak. Both treatments consistently increased utilization of substrates, especially fatty acids, leading to the reduction of intracellular lipid accumulation and oxidative stress. Finally, the shift of the mitochondrial dynamic toward fusion by butyrate and FBA resulted in the improvement not only of mitochondrial cell energy metabolism but also of glucose homeostasis. In conclusion, butyrate and its more palatable synthetic derivative, FBA, modulating mitochondrial function, efficiency, and dynamics, can be considered a new therapeutic strategy to counteract obesity and insulin resistance.


Assuntos
Butiratos/farmacologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/efeitos dos fármacos , Acetil-CoA Carboxilase/metabolismo , Animais , Western Blotting , Composição Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Células Hep G2 , Homeostase/efeitos dos fármacos , Humanos , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
11.
Artigo em Inglês | MEDLINE | ID: mdl-26393433

RESUMO

The role of PACAP in spermatogenesis and steroidogenesis has been largely investigated in last years in mammals; conversely, a few studies have been performed in non mammalian vertebrates. In this paper we investigated the sequence, expression and localization of PACAP and its PAC1 receptor in the testis of the benthic elasmobranch Torpedo marmorata, the marbled electric ray. Cloning a partial PACAP cDNA, we demonstrated for the first time in elasmobranches that PACAP shows a highly conserved sequence, compared with the PACAP of other chordates (tunicates and vertebrates). Moreover, the phylogenetic analysis revealed that PACAP has been well preserved during evolution and that a negative selection acts on PACAP sequence, leading to the conservation of the coding sites. The phylogenetic consensus tree showed also that Torpedo PACAP is more related with the amphibian PACAP than with the teleost one. Finally, we demonstrated that in T. marmorata PACAP and its PAC1 receptor are synthesized directly in the testis, where they show a wider localization than mammals, suggesting that this neuropeptide is involved in the control of Torpedo spermatogenesis.


Assuntos
Filogenia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Testículo/metabolismo , Torpedo/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Transporte Proteico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Espermatogênese
12.
Artigo em Inglês | MEDLINE | ID: mdl-26517944

RESUMO

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that in mammalian testis is involved in the control of testosterone and 17ß-estradiol synthesis. A similar involvement was recently postulated in the testis of a nonmammalian vertebrate, the wall lizard Podarcis sicula. Indeed, we reported the presence of PACAP and its receptors throughout the reproductive cycle within both germ and somatic cells. Now, we investigated the effects of PACAP on steroidogenesis in significant periods of Podarcis reproductive cycle: winter stasis, reproductive period and summer stasis. Using different in vitro treatments, in the absence or presence of receptor antagonists, we demonstrated that in P. sicula testis PACAP is involved in the control of testosterone and 17ß-estradiol production. In particular we demonstrated that treatment with PACAP induced a testosterone increase only in stasis periods (winter and summer stasis); differently they induced a 17ß-estradiol production in all periods analyzed (summer stasis, winter stasis and reproductive period).


Assuntos
Estradiol/biossíntese , Lagartos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Testículo/metabolismo , Testosterona/biossíntese , Animais , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Reprodução/efeitos dos fármacos , Estações do Ano , Testículo/efeitos dos fármacos
13.
Toxicol In Vitro ; 31: 126-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26585375

RESUMO

The increase in the use of nanoparticles, as a promising tool for drug delivery or as a food additive, raises questions about their interaction with biological systems, especially in terms of evoked responses. In this work, we evaluated the kinetics of uptake of 44 nm (NP44) and 100 nm (NP100) unmodified polystyrene nanoparticles (PS-NPs) in gastric adenocarcinoma (AGS) cells, as well as the endocytic mechanism involved, and the effect on cell viability and gene expression of genes involved in cell cycle regulation and inflammation processes. We showed that NP44 accumulate rapidly and more efficiently in the cytoplasm of AGS compared to NP100; both PS-NPs showed an energy dependent mechanism of internalization and a clathrin-mediated endocytosis pathway. Dose response treatments revealed a non-linear curve. PS-NPs also affected cell viability, inflammatory gene expression and cell morphology. NP44 strongly induced an up-regulation of IL-6 and IL-8 genes, two of the most important cytokines involved in gastric pathologies. Our study suggests that parameters such as time, size and concentration of NPs must be taken carefully into consideration during the development of drug delivery systems based on NPs and for the management of nanoparticles associated risk factors.


Assuntos
Nanopartículas , Poliestirenos/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Endocitose , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Antígeno Ki-67/genética , NF-kappa B/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
14.
J Exp Zool A Ecol Genet Physiol ; 323(10): 714-721, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26351243

RESUMO

Vasoactive intestinal peptide (VIP) is a pleiotropic neuropeptide involved in different functions, including testosterone synthesis. Recently, we reported the presence of VIP in the testis of Podarcis sicula, throughout the reproductive cycle. Now, we investigated the effects of the VIP on steroidogenesis in significant periods of the Podarcis reproductive cycle: winter stasis, reproductive period, and summer stasis. Using VIP treatments in testis culture in absence or presence of receptors antagonists, we demonstrated for the first time that in P. sicula, VIP is involved not only in testosterone synthesis, as in mammals, but in 17ß-estradiol synthesis too. J. Exp. Zool. 323A: 714-721, 2015. © 2015 Wiley Periodicals, Inc.

15.
Gen Comp Endocrinol ; 205: 102-8, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24852351

RESUMO

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide involved in multiple functions, including vertebrate reproduction. Recently, we reported the presence of PACAP in the testis of Italian wall lizard Podarcis sicula during reproductive period (May-June). Herein we investigated the PACAP mRNA expression and the localization of PACAP/PACAP receptor system, in the other periods of the Podarcis reproductive cycle, namely in summer stasis, early autumnal resumption, mid-autumnal resumption, winter stasis, and spring resumption. Using biomolecular and immunohistochemical investigations, we demonstrated that PACAP mRNA was widely expressed in all germ and somatic cells; in summer stasis (July-August) and early autumnal resumption (September) in particular, the mRNA was always found in Sertoli cells while was transiently expressed in germ and in Leydig cells. Differently from the mRNA, the protein was always present in germ and somatic cells independently from the reproductive cycle phase. As PACAP, the PAC1 receptor was always present in the testis, except for the summer stasis (July-August) and the early autumnal resumption (September), when PACAP was lacking in germ and somatic cells (Leydig and Sertoli cells). The present results strongly suggest that PACAP/PAC1 receptor system is widely represented during the reproductive cycle of male lizard. The possible involvement of PACAP/PACAP receptor system in the control of spermatogenesis is discussed.


Assuntos
Lagartos/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Humanos , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Reprodução , Testículo/citologia , Testículo/metabolismo
16.
J Exp Zool A Ecol Genet Physiol ; 321(6): 334-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24753326

RESUMO

Using molecular, biochemical, and cytological tools, we studied the nucleotide and the deduced amino acid sequence of PHI/VIP and the distribution of VIP/VPAC receptor system in the testis of the Italian wall lizard Podarcis sicula to evaluate the involvement of such a neuropeptide in the spermatogenesis control. We demonstrated that (1) Podarcis sicula VIP had a high identity with other vertebrate VIP sequences, (2) differently from mammals, VIP was synthesized directly in the testis, and (3) VIP and its receptor VPAC2 were widely distributed in germ and somatic cells, while the VPAC1 R had a distribution limited to Leydig cells. Our results demonstrated that in Podarcis sicula the VIP sequence is highly preserved and that this neuropeptide is involved in lizard spermatogenesis and steroidogenesis.


Assuntos
Lagartos/fisiologia , Receptores de Peptídeo Intestinal Vasoativo/fisiologia , Testículo/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Sequência Conservada , Hibridização In Situ , Células Intersticiais do Testículo/química , Células Intersticiais do Testículo/fisiologia , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Peptídeo Intestinal Vasoativo/análise , Receptores de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/análise , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/fisiologia , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/análise , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/fisiologia , Alinhamento de Sequência , Testículo/química , Peptídeo Intestinal Vasoativo/análise , Peptídeo Intestinal Vasoativo/genética
17.
Gen Comp Endocrinol ; 205: 94-101, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24694517

RESUMO

Starting from the knowledge that in the reproductive period the Vasoactive Intestinal Peptide (VIP) is widely distributed in Podarcis sicula testis, we studied VIP expression and the localization of the neuropeptide and its receptors in the testis of the Italian wall lizard P. sicula in the other phases of its reproductive cycle (summer stasis, autumnal resumption, winter stasis, spring resumption). By Real Time-PCR, we demonstrated that testicular VIP mRNA levels change during the reproductive cycle, showing a cyclic trend with two peaks, one in the mid-autumnal resumption and the other in the reproductive period. By in situ hybridization and immunohistochemistry, we demonstrated that both VIP mRNA and protein were widely distributed in the testis in almost all the phases of the cycle, except in the early autumnal resumption. As regards the receptors, the VPAC1R was localized mainly in Leydig cells, while the VPAC2R showed the same distribution of VIP. Our results demonstrate that, differently from mammals, where VIP is present only in nerve fibres innerving the testis, an endotesticular synthesis takes place in the lizard and the VIP synthesis changes throughout the reproductive cycle. Moreover, the VIP/VPAC receptor system distribution observed in germ and somatic cells in various phases of the cycle, and particularly in the autumnal resumption and the reproductive period, strongly suggests its involvement in both spermatogenesis and steroidogenesis. Finally, the wider distribution of VIP in lizards with respect to mammals leads us to hypothesize that during the evolution the synthesis sites have been transferred from the testis to other districts, such as the brain.


Assuntos
Lagartos/fisiologia , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Humanos , Lagartos/genética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Peptídeo Intestinal Vasoativo/genética , Reprodução/genética , Estações do Ano , Testículo/citologia , Testículo/metabolismo , Peptídeo Intestinal Vasoativo/genética
18.
J Exp Zool A Ecol Genet Physiol ; 319(1): 1-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23027597

RESUMO

The pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the glucagon-related family and occurs in two amidated forms, PACAP38 and PACAP27, with 38 and 27 amino acids, respectively. PACAP acts by binding to three different receptors, that are classified by their binding affinity for PACAP and VIP (vasoactive intestinal polypeptide): PAC(1)R (PACAP-specific receptor) exclusively binds PACAP, while VPAC(1)R (VIP/PACAP receptor, subtype 1) and VPAC(2)R (VIP/PACAP receptor, subtype 2) bind both PACAP and VIP. PACAP, first discovered in the brain, was then localized in several peripheral tissues of mammals, including the ovary. Besides mammals, PACAP and its receptors have been reported in fish too; however, less is known about the presence of PACAP in the fish ovary and the studies are limited to teleosts. The aim of our work was to study the distribution of the PACAP/PACAP-Rs system in the ovary of the cartilaginous fish Torpedo marmorata. Using in situ hybridization (ISH) and immunohistochemistry techniques, we demonstrated that PACAP and its receptors are widely represented in the Torpedo ovary in a stage-dependent manner. Moreover, our findings suggest an involvement of this peptide in the whole follicologenesis, probably influencing steroidogenesis, follicle development, and oocyte growth.


Assuntos
Ovário/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Torpedo/metabolismo , Animais , Feminino , Imuno-Histoquímica/veterinária , Hibridização In Situ/veterinária , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética
19.
J Mol Neurosci ; 48(3): 638-46, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22825651

RESUMO

The aim of this work was to study, by immunoprecipitation, in situ hybridization and immunohistochemistry, and the expression of the vasoactive intestinal peptide (VIP) and of its receptors (VPAC(1)R and VPAC(2)R) in the testis of a nonmammalian vertebrate, the cartilaginous fish Torpedo marmorata. We demonstrated that, differently from mammals, VIP and VPAC(2)R were widely distributed in the testicular cells while the VPAC(1)R had a limited distribution. In details, we showed that VIP and VPAC(2)R were present in mitotic and differentiating germ cells as well as in the cells involved in the steroidogenesis, i.e., Leydig, Sertoli cells, and prespermatogonia and spermatogonia. The possibility that VIP is involved in the spermatogenesis and particularly in the steroidogenesis of T. marmorata is discussed.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo/biossíntese , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/biossíntese , Testículo/metabolismo , Torpedo/metabolismo , Peptídeo Intestinal Vasoativo/biossíntese , Animais , Expressão Gênica , Técnicas Imunoenzimáticas , Hibridização In Situ , Células Intersticiais do Testículo/metabolismo , Masculino , RNA Mensageiro/biossíntese , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Esteroides/biossíntese , Torpedo/genética , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/fisiologia
20.
Gen Comp Endocrinol ; 174(3): 318-25, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21983423

RESUMO

In vertebrates, the liver was long thought to be the only site of vitellogenin (Vtg) production, but recent studies demonstrated that Vtg is also expressed in extrahepatic districts. The aim of this paper is to assess, by in situ hybridization and immunohistochemistry, the expression of Vtg in the testis and kidney of Torpedo marmorata exposed to 17ß-estradiol (E(2)). In treated samples vtg mRNA and Vtg were detected contemporaneously only in the testis; differently the kidney cells were positive to Vtg antibody, but negative to vtg mRNA. This is the first study to assess that male germ cells, after an exposure to E(2), synthesize Vtg in a stage-dependent manner. The presence of Vtg and the modifications observed in the kidney after E(2) treatment are discussed.


Assuntos
Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Testículo/efeitos dos fármacos , Torpedo/genética , Vitelogeninas/genética , Animais , Feminino , Imuno-Histoquímica , Hibridização In Situ , Rim/metabolismo , Fígado/metabolismo , Masculino , RNA Mensageiro/metabolismo , Testículo/metabolismo , Distribuição Tecidual , Torpedo/metabolismo , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA