Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627752

RESUMO

The rising demand for minimally processed, natural, and healthier food products has led to the search for alternative and multifunctional bioactive food components. Therefore, the present study focuses on the functional proprieties of a peptide fraction derived from Saccharomyces cerevisiae metabolism. The antimicrobial activity of the peptide fraction is evaluated against various foodborne pathogens, including Candida albicans, Candida krusei, Escherichia coli, Listeria monocytogenes, and Salmonella sp. The peptide fraction antioxidant properties are assessed using FRAP and DPPH scavenging capacity assays. Furthermore, the peptide fraction's cytotoxicity is evaluated in colorectal carcinoma and normal colon epithelial cells while its potential as an antidiabetic agent is investigated through α-amylase and α-glucosidase inhibitory assays. The results demonstrate that the 2-10 kDa peptide fraction exhibits antimicrobial effects against all tested microorganisms, except C. krusei. The minimal inhibitory concentration for E. coli, L. monocytogenes, and Salmonella sp. remains consistently low, at 0.25 mg/mL, while C. albicans requires a higher concentration of 1.0 mg/mL. Furthermore, the peptide fraction displays antioxidant activity, as evidenced by DPPH radical scavenging activity of 81.03%, and FRAP values of 1042.50 ± 32.5 µM TE/mL at 1.0 mg/mL. The peptide fraction exhibits no cytotoxicity in both tumor and non-tumoral human cells at a concentration up to 0.3 mg/mL. Moreover, the peptide fraction presents anti-inflammatory activity, significantly reducing the expression of the TNFα gene by more than 29.7% in non-stimulated colon cells and by 50% in lipopolysaccharide-stimulated colon cells. It also inhibits the activity of the carbohydrate digestive enzymes α-amylase (IC50 of 199.3 ± 0.9 µg/mL) and α-glucosidase (IC20 of 270.6 ± 6.0 µg/mL). Overall, the findings showed that the peptide fraction exhibits antibacterial, antioxidant, anti-inflammatory, and antidiabetic activity. This study represents a step forward in the evaluation of the functional biological properties of S. cerevisiae bioactive peptides.

2.
J Exp Bot ; 71(21): 6789-6798, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32584998

RESUMO

Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses, and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated >0.2% Si (DW) in leaves when irrigated with 1.5 mM Si for 1 month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, or on the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and whether grapevine can benefit from Si fertilization.


Assuntos
Aquaporinas , Vitis , Aquaporinas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Vitis/genética , Vitis/metabolismo
3.
FEMS Yeast Res ; 18(3)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546274

RESUMO

Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which induce the death of several non-Saccharomyces yeasts. Previously, we demonstrated that the naturally secreted GAPDH-derived AMPs (i.e. saccharomycin) caused a loss of culturability and decreased the intracellular pH (pHi) of Hanseniaspora guilliermondii cells. In this study, we show that chemically synthesised analogues of saccharomycin also induce a pHi drop and loss of culturability in H. guilliermondii, although to a lesser extent than saccharomycin. To assess the underlying causes of the pHi drop, we evaluated the membrane permeability to H+ cations of H. guilliermondii cells, after being exposed to saccharomycin or its synthetic analogues. Results showed that the H+-efflux decreased by 75.6% and the H+-influx increased by 66.5% in cells exposed to saccharomycin at pH 3.5. Since H+-efflux via H+-ATPase is energy dependent, reduced glucose consumption would decrease ATP production and consequently H+-ATPase activity. However, glucose uptake rates were not affected, suggesting that the AMPs rather than affecting glucose transporters may affect directly the plasma membrane H+-ATPase or increase ATP leakage due to cell membrane disturbance. Thus, our study revealed that both saccharomycin and its synthetic analogues induced cell death of H. guilliermondii by increasing the proton influx and inhibiting the proton efflux.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/química , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/química , Saccharomycetales/efeitos dos fármacos , Permeabilidade da Membrana Celular , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Saccharomycetales/enzimologia
4.
Int J Mol Sci ; 17(12)2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27983600

RESUMO

Aquaporin-5 (AQP5) is a membrane water channel widely distributed in human tissues that was found up-regulated in different tumors and considered implicated in carcinogenesis in different organs and systems. Despite its wide distribution pattern and physiological importance, AQP5 short-term regulation was not reported and mechanisms underlying its involvement in cancer are not well defined. In this work, we expressed rat AQP5 in yeast and investigated mechanisms of gating, as well as AQP5's ability to facilitate H2O2 plasma membrane diffusion. We found that AQP5 can be gated by extracellular pH in a phosphorylation-dependent manner, with higher activity at physiological pH 7.4. Moreover, similar to other mammalian AQPs, AQP5 is able to increase extracellular H2O2 influx and to affect oxidative cell response with dual effects: whereas in acute oxidative stress conditions AQP5 induces an initial higher sensitivity, in chronic stress AQP5 expressing cells show improved cell survival and resistance. Our findings support the involvement of AQP5 in oxidative stress and suggest AQP5 modulation by phosphorylation as a novel tool for therapeutics.


Assuntos
Aquaporina 5/metabolismo , Estresse Oxidativo , Animais , Aquaporina 5/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Glucose/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Concentração de Íons de Hidrogênio , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Água/metabolismo
5.
FEMS Yeast Res ; 10(3): 252-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20146744

RESUMO

Plasma membrane integrity, ability to transport substrates and maintenance of homeostasis represent obligatory requirements for efficient ethanol production by Saccharomyces cerevisiae. The effect of ethanol on water diffusion through the bilayer and on mediated water movements was evaluated by stopped flow spectroscopy. Ethanol stimulated water diffusion and inhibited mediated water transport. In a strain overexpressing AQY1, the activation energy for water transport increased progressively (from 5.9 to 12.7 kcal mol(-1)) for increasing ethanol concentrations (up to 12% v/v), indicating that mediated water transport lost importance as compared with water diffusion through the bilayer. The effect of ethanol on proton movements (inward by passive diffusion and outward through the PMA1 H(+)-ATPase) was evaluated by measuring the rate of extracellular alcalinization and acidification of unbuffered cell suspensions at different temperatures. Above 10% ethanol, H(+) diffusion was strongly increased at 30 degrees C, but no effect was observed at 20 degrees C up to 12%, indicating the existence of a threshold above which ethanol has a marked effect. On H(+) extrusion, ethanol had no effect at 20 degrees C, but induced a monotonous decrease at higher temperatures. Our results support the view that above a threshold of ethanol concentration, the membrane structure is disrupted, becoming very leaky to H(+).


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Etanol/metabolismo , Prótons , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Água/metabolismo , Aquaporinas/biossíntese , Expressão Gênica , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise Espectral/métodos , Temperatura
6.
Eukaryot Cell ; 5(8): 1388-98, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16896222

RESUMO

The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpression of this gene in wild-type S. cerevisiae increased caffeine and rapamycin tolerance, blocked growth in low glucose concentrations and nonfermentable carbon sources, and resulted in lithium- and sodium-sensitive cells. Sensitivity to salt could be attributed to a reduced cation efflux, most likely because of a decrease in expression of the ENA1 Na(+)-ATPase gene. Overexpression of DhGZF3 did not affect cell growth in a gat1 mutant but was lethal in the absence of Gln3. These are positive factors that oppose both Gzf3 and Dal80. Genome-wide transcriptional profiling of wild-type cells overexpressing DhGZF3 shows decreased expression of a number of genes that are usually induced in poor nitrogen sources. In addition, the entire pathway leading to Lys biosynthesis was repressed, probably as a result of a decrease in the expression of the specific Lys14 transcription factor. In conclusion, our results demonstrate that DhGzf3 can play a role as a negative GATA transcription factor when expressed in S. cerevisiae and that it most probably represents the only member of this family in D. hansenii. These findings also point to the GATA transcription factors as relevant elements for alkaline-pH tolerance.


Assuntos
Fatores de Transcrição GATA/fisiologia , Regulação Fúngica da Expressão Gênica , Homeostase , Nitrogênio/metabolismo , Saccharomycetales/fisiologia , Adenosina Trifosfatases/metabolismo , Álcalis/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Concentração de Íons de Hidrogênio , Íons , Mutação , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , ATPase Trocadora de Sódio-Potássio , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA