Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39199135

RESUMO

Bronchopulmonary dysplasia (BPD) is a lung complication of premature births. The leading causes of BPD are oxidative stress (OS) from oxygen treatment, infection or inflammation, and mechanical ventilation. OS activates alveolar myeloid cells with subsequent myeloperoxidase (MPO)-mediated OS. Premature human neonates lack sufficient antioxidative capacity and are susceptible to OS. Unopposed OS elicits inflammation, endoplasmic reticulum (ER) stress, and cellular senescence, culminating in a BPD phenotype. Poor nutrition, patent ductus arteriosus, and infection further aggravate OS. BPD survivors frequently suffer from reactive airway disease, neurodevelopmental deficits, and inadequate exercise performance and are prone to developing early-onset chronic obstructive pulmonary disease. Rats and mice are commonly used to study BPD, as they are born at the saccular stage, comparable to human neonates at 22-36 weeks of gestation. The alveolar stage in rats and mice starts at the postnatal age of 5 days. Because of their well-established antioxidative capacities, a higher oxygen concentration (hyperoxia, HOX) is required to elicit OS lung damage in rats and mice. Neutrophil infiltration and ER stress occur shortly after HOX, while cellular senescence is seen later. Studies have shown that MPO plays a critical role in the process. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), a reversible MPO inhibitor, attenuates BPD effectively. In contrast, the irreversible MPO inhibitor-AZD4831-failed to provide similar efficacy. Interestingly, KYC cannot offer its effectiveness without the existence of MPO. We review the mechanisms by which this anti-MPO agent attenuates BPD.

2.
Free Radic Biol Med ; 215: 112-126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336101

RESUMO

Murine sickle cell disease (SCD) results in damage to multiple organs, likely mediated first by vasculopathy. While the mechanisms inducing vascular damage remain to be determined, nitric oxide bioavailability and sterile inflammation are both considered to play major roles in vasculopathy. Here, we investigate the effects of high mobility group box-1 (HMGB1), a pro-inflammatory damage-associated molecular pattern (DAMP) molecule on endothelial-dependent vasodilation and lung morphometrics, a structural index of damage in sickle (SS) mice. SS mice were treated with either phosphate-buffered saline (PBS), hE-HMGB1-BP, an hE dual-domain peptide that binds and removes HMGB1 from the circulation via the liver, 1-[4-(aminocarbonyl)-2-methylphenyl]-5-[4-(1H-imidazol-1-yl)phenyl]-1H-pyrrole-2-propanoic acid (N6022) or N-acetyl-lysyltyrosylcysteine amide (KYC) for three weeks. Human umbilical vein endothelial cells (HUVEC) were treated with recombinant HMGB1 (r-HMGB1), which increases S-nitrosoglutathione reductase (GSNOR) expression by ∼80%, demonstrating a direct effect of HMGB1 to increase GSNOR. Treatment of SS mice with hE-HMGB1-BP reduced plasma HMGB1 in SS mice to control levels and reduced GSNOR expression in facialis arteries isolated from SS mice by ∼20%. These changes were associated with improved endothelial-dependent vasodilation. Treatment of SS mice with N6022 also improved vasodilation in SS mice suggesting that targeting GSNOR also improves vasodilation. SCD decreased protein nitrosothiols (SNOs) and radial alveolar counts (RAC) and increased GSNOR expression and mean linear intercepts (MLI) in lungs from SS mice. The marked changes in pulmonary morphometrics and GSNOR expression throughout the lung parenchyma in SS mice were improved by treating with either hE-HMGB1-BP or KYC. These data demonstrate that murine SCD induces vasculopathy and chronic lung disease by an HMGB1- and GSNOR-dependent mechanism and suggest that HMGB1 and GSNOR might be effective therapeutic targets for reducing vasculopathy and chronic lung disease in humans with SCD.


Assuntos
Anemia Falciforme , Benzamidas , Proteína HMGB1 , Pneumopatias , Lesão Pulmonar , Pirróis , Doenças Vasculares , Humanos , Animais , Camundongos , Lesão Pulmonar/etiologia , Proteína HMGB1/genética , Células Endoteliais/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Inflamação , Doenças Vasculares/etiologia
3.
Am J Respir Cell Mol Biol ; 70(2): 94-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37874230

RESUMO

Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. N-acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Ácido Tauroquenodesoxicólico , Recém-Nascido , Animais , Ratos , Humanos , Displasia Broncopulmonar/patologia , Hiperóxia/metabolismo , Ratos Sprague-Dawley , Pulmão/patologia , Senescência Celular , Peroxidase/metabolismo , Oxidantes , Animais Recém-Nascidos , Modelos Animais de Doenças
4.
PLoS One ; 17(8): e0269564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36018859

RESUMO

Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Pneumonia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Humanos , Recém-Nascido , Pulmão , Proteômica , Ratos , Ratos Sprague-Dawley , Tunicamicina
5.
Free Radic Biol Med ; 166: 73-89, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607217

RESUMO

Bronchopulmonary dysplasia (BPD) is caused primarily by oxidative stress and inflammation. To induce BPD, neonatal rat pups were raised in hyperoxic (>90% O2) environments from day one (P1) until day ten (P10) and treated with N-acetyl-lysyltyrosylcysteine amide (KYC). In vivo studies showed that KYC improved lung complexity, reduced myeloperoxidase (MPO) positive (+) myeloid cell counts, MPO protein, chlorotyrosine formation, increased endothelial cell CD31 expression, decreased 8-OH-dG and Cox-1/Cox-2, HMGB1, RAGE, TLR4, increased weight gain and improved survival in hyperoxic pups. EPR studies confirmed that MPO reaction mixtures oxidized KYC to a KYC thiyl radical. Adding recombinant HMGB1 to the MPO reaction mixture containing KYC resulted in KYC thiylation of HMGB1. In rat lung microvascular endothelial cell (RLMVEC) cultures, KYC thiylation of RLMVEC proteins was increased the most in RLMVEC cultures treated with MPO + H2O2, followed by H2O2, and then KYC alone. KYC treatment of hyperoxic pups decreased total HMGB1 in lung lysates, increased KYC thiylation of HMGB1, terminal HMGB1 thiol oxidation, decreased HMGB1 association with TLR4 and RAGE, and shifted HMGB1 in lung lysates from a non-acetylated to a lysyl-acetylated isoform, suggesting that KYC reduced lung cell death and that recruited immune cells had become the primary source of HMGB1 released into the hyperoxic lungs. MPO-dependent and independent KYC-thiylation of Keap1 were both increased in RLMVEC cultures. Treating hyperoxic pups with KYC increased KYC thiylation and S-glutathionylation of Keap1, and Nrf2 activation. These data suggest that KYC is a novel system pharmacological agent that exploits MPO to inhibit toxic oxidant production and is oxidized into a thiyl radical that inactivates HMGB1, activates Nrf2, and increases antioxidant enzyme expression to improve lung complexity and reduce BPD in hyperoxic rat pups.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Amidas , Animais , Animais Recém-Nascidos , Humanos , Peróxido de Hidrogênio , Recém-Nascido , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Pulmão/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos
6.
Diab Vasc Dis Res ; 17(3): 1479164120907971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32223319

RESUMO

OBJECTIVE: Diabetes mellitus is a significant risk factor for peripheral artery disease. Diabetes mellitus induces chronic states of oxidative stress and vascular inflammation that increase neutrophil activation and release of myeloperoxidase. The goal of this study is to determine whether inhibiting myeloperoxidase reduces oxidative stress and neutrophil infiltration, increases vascularization, and improves blood flow in a diabetic murine model of hindlimb ischaemia. METHODS: Leptin receptor-deficient (db/db) mice were subjected to hindlimb ischaemia. Ischaemic mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC) to inhibit myeloperoxidase. After ligating the femoral artery, effects of treatments were determined with respect to hindlimb blood flow, neutrophil infiltration, oxidative damage, and the capability of hindlimb extracellular matrix to support human endothelial cell proliferation and migration. RESULTS: KYC treatment improved hindlimb blood flow at 7 and 14 days in db/db mice; decreased the formation of advanced glycation end products, 4-hydroxynonenal, and 3-chlorotyrosine; reduced neutrophil infiltration into the hindlimbs; and improved the ability of hindlimb extracellular matrix from db/db mice to support endothelial cell proliferation and migration. CONCLUSION: These results demonstrate that inhibiting myeloperoxidase reduces oxidative stress in ischaemic hindlimbs of db/db mice, which improves blood flow and reduces neutrophil infiltration such that hindlimb extracellular matrix from db/db mice supports endothelial cell proliferation and migration.


Assuntos
Indutores da Angiogênese/farmacologia , Diabetes Mellitus/metabolismo , Inibidores Enzimáticos/farmacologia , Isquemia/tratamento farmacológico , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Peroxidase/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/enzimologia , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Fluxo Sanguíneo Regional , Transdução de Sinais
7.
Cell Rep ; 25(9): 2605-2616.e7, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485823

RESUMO

The import of superoxide dismutase-2 (SOD2) into mitochondria is vital for the survival of eukaryotic cells. SOD2 is encoded within the nuclear genome and translocated into mitochondria for activation after translation in the cytosol. The molecular chaperone Hsp70 modulates SOD2 activity by promoting import of SOD2 into mitochondria. In turn, the activity of Hsp70 is controlled by co-chaperones, particularly CHIP, which directs Hsp70-bound proteins for degradation in the proteasomes. We investigated the mechanisms controlling the activity of SOD2 to signal activation and maintain mitochondrial redox balance. We demonstrate that Akt1 binds to and phosphorylates the C terminus of Hsp70 on Serine631, which inhibits CHIP-mediated SOD2 degradation thereby stabilizing and promoting SOD2 import. Conversely, increased mitochondrial-H2O2 formation disrupts Akt1-mediated phosphorylation of Hsp70, and non-phosphorylatable Hsp70 mutants decrease SOD2 import, resulting in mitochondrial oxidative stress. Our findings identify Hsp70 phosphorylation as a physiological mechanism essential for regulation of mitochondrial redox balance.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Animais , Células Endoteliais/metabolismo , Estabilidade Enzimática , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP70/química , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Serina/metabolismo , Ovinos , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
8.
J Neuroinflammation ; 13(1): 119, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27220420

RESUMO

BACKGROUND: Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. METHODS: To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. RESULTS: Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. CONCLUSIONS: MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.


Assuntos
Lesões Encefálicas , Infarto da Artéria Cerebral Média/complicações , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/uso terapêutico , Peroxidase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/etiologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Oligopeptídeos/farmacologia , Oxidantes/metabolismo , Oxidantes/farmacologia , Proteína Supressora de Tumor p53/metabolismo
9.
PLoS One ; 11(4): e0151999, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050551

RESUMO

Interferon regulatory factor 5 (IRF5) has been called a "master switch" for its ability to determine whether cells mount proinflammatory or anti-inflammatory responses. Accordingly, IRF5 should be an attractive target for therapeutic drug development. Here we report on the development of a novel decoy peptide inhibitor of IRF5 that decreases myocardial inflammation and improves vascular endothelial cell (EC) function in tight-skin (Tsk/+) mice. Biolayer interferometry studies showed the Kd of IRF5D for recombinant IRF5 to be 3.72 ± 0.74x10-6M. Increasing concentrations of IRF5D (0-100 µg/mL, 24h) had no significant effect on EC proliferation or apoptosis. Treatment of Tsk/+ mice with IRF5D (1mg/kg/d subcutaneously, 21d) reduced IRF5 and ICAM-1 expression and monocyte/macrophage and neutrophil counts in Tsk/+ hearts compared to expression in hearts from PBS-treated Tsk/+ mice (p<0.05). EC-dependent vasodilatation of facialis arteries isolated from PBS-treated Tsk/+ mice was reduced (~15%). IRF5D treatments (1mg/kg/d, 21d) improved vasodilatation in arteries isolated from Tsk/+ mice nearly 3-fold (~45%, p<0.05), representing nearly 83% of the vasodilatation in arteries isolated from C57Bl/6J mice (~55%). IRF5D (50µg/mL, 24h) reduced nuclear translocation of IRF5 in myocytes cultured on both Tsk/+ cardiac matrix and C57Bl/6J cardiac matrix (p<0.05). These data suggest that IRF5 plays a causal role in inflammation, fibrosis and impaired vascular EC function in Tsk/+ mice and that treatment with IRF5D effectively counters IRF5-dependent mechanisms of inflammation and fibrosis in the myocardium in these mice.


Assuntos
Endotélio Vascular/fisiopatologia , Fibrose/prevenção & controle , Fatores Reguladores de Interferon/fisiologia , Miocardite/prevenção & controle , Peptídeos/fisiologia , Animais , Núcleo Celular/metabolismo , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Conformação Proteica , Transporte Proteico
10.
J Stroke Cerebrovasc Dis ; 24(12): 2759-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433438

RESUMO

BACKGROUND: Insidious cumulative brain injury from motor vehicle-induced whole-body vibration (MV-WBV) has not yet been studied. The objective of the present study is to validate whether whole-body vibration for long periods causes cumulative brain injury and impairment of the cerebral function. We also explored a preventive method for MV-WBV injury. METHODS: A study simulating whole-body vibration was conducted in 72 male Sprague-Dawley rats divided into 9 groups (N = 8): (1) 2-week normal control; (2) 2-week sham control (in the tube without vibration); (3) 2-week vibration (exposed to whole-body vibration at 30 Hz and .5 G acceleration for 4 hours/day, 5 days/week for 2 weeks; vibration parameters in the present study are similar to the most common driving conditions); (4) 4-week sham control; (5) 4-week vibration; (6) 4-week vibration with human apolipoprotein A-I molecule mimetic (4F)-preconditioning; (7) 8-week sham control; (8) 8-week vibration; and (9) 8-week 4F-preconditioning group. All the rats were evaluated by behavioral, physiological, and histological studies of the brain. RESULTS: Brain injury from vibration is a cumulative process starting with cerebral vasoconstriction, squeezing of the endothelial cells, increased free radicals, decreased nitric oxide, insufficient blood supply to the brain, and repeated reperfusion injury to brain neurons. In the 8-week vibration group, which indicated chronic brain edema, shrunken neuron numbers increased and whole neurons atrophied, which strongly correlated with neural functional impairment. There was no prominent brain neuronal injury in the 4F groups. CONCLUSIONS: The present study demonstrated cumulative brain injury from MV-WBV and validated the preventive effects of 4F preconditioning.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Peptídeos/uso terapêutico , Vibração , Acidentes de Trânsito , Animais , Lesões Encefálicas/prevenção & controle , Masculino , Ratos , Ratos Sprague-Dawley
11.
PLoS One ; 10(4): e0123138, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849485

RESUMO

High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.


Assuntos
Acroleína/farmacologia , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Cromatografia em Camada Fina , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
PLoS One ; 9(12): e115317, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517730

RESUMO

Necrotizing enterocolitis (NEC) is a complication of prematurity. The etiology is unknown, but is related to enteral feeding, ischemia, infection, and inflammation. Reactive oxygen species production, most notably superoxide, increases in NEC. NADPH oxidase (NOX) generates superoxide, but its activity in NEC remains unknown. We hypothesize that NOX-derived superoxide production increases in NEC. Newborn Sprague-Dawley rats were divided into control, formula-fed, formula/LPS, formula/hypoxia, and NEC (formula, hypoxia, and LPS). Intestinal homogenates were analyzed for NADPH-dependent superoxide production. Changes in superoxide levels on days 0-4 were measured. Inhibitors for nitric oxide synthase (L-NAME) and NOX2 (GP91-ds-tat) were utilized. RT-PCR for eNOS, NOX1, GP91phox expression was performed. Immunofluorescence studies estimated the co-localization of p47phox and GP91phox in control and NEC animals on D1, D2, and D4. NEC pups generated more superoxide than controls on D4, while all other groups were unchanged. NADPH-dependent superoxide production was greater in NEC on days 0, 3, and 4. GP91-ds-tat decreased superoxide production in both groups, with greater inhibition in NEC. L-NAME did not alter superoxide production. Temporally, superoxide production varied minimally in controls. In NEC, superoxide generation was decreased on day 1, but increased on days 3-4. GP91phox expression was higher in NEC on days 2 and 4. NOX1 and eNOS expression were unchanged from controls. GP91phox and p47phox had minimal co-localization in all control samples and NEC samples on D1 and D2, but had increased co-localization on D4. In conclusion, this study proves that experimentally-induced NEC increases small intestinal NOX activity. All components of NEC model are necessary for increased NOX activity. NOX2 is the major source, especially as the disease progresses.


Assuntos
Modelos Animais de Doenças , Enterocolite Necrosante/enzimologia , Intestinos/enzimologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Animais , Animais Recém-Nascidos , Nutrição Enteral , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Imunofluorescência , Hipóxia/complicações , Hipóxia/fisiopatologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Glicoproteínas de Membrana/genética , NADPH Oxidase 2 , NADPH Oxidases/genética , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
J Pediatr Surg ; 49(6): 954-60; discussion 960, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24888842

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown that enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC. The aim of this study is to investigate whether IAP is protective to the preterm intestine in the presence of formula feeding and in the absence of NEC. METHODS: Preterm rat pups were fed formula with or without supplementation with IAP, and intestine was obtained on day of life 3 for analysis of IAP activity, mRNA expression of TNFα, IL-6 and iNOS and permeability and cytokine expression after LPS exposure. RESULTS: There was no difference in the absolute and intestine specific alkaline phosphatase activity in both groups. Rat pups fed IAP had decreased mRNA expression of the inflammatory cytokines TNFα, IL-6 and iNOS. Pups supplemented with IAP had decreased permeability and inflammatory cytokine expression after exposure to LPS ex vivo when compared to formula fed controls. CONCLUSIONS: Our results support that IAP is beneficial to preterm intestine and decreases intestinal injury and inflammation caused by LPS.


Assuntos
Fosfatase Alcalina/administração & dosagem , Enterocolite Necrosante/tratamento farmacológico , Mucosa Intestinal/metabolismo , Administração Oral , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/genética , Animais , Animais Recém-Nascidos , Citocinas/biossíntese , Citocinas/genética , Modelos Animais de Doenças , Enterocolite Necrosante/genética , Enterocolite Necrosante/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
14.
Cancers (Basel) ; 6(2): 1111-27, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24821130

RESUMO

Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

15.
J Lipid Res ; 54(11): 3016-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23883583

RESUMO

Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (≤4,000 µM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H2O2 consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease.


Assuntos
Oligopeptídeos/farmacologia , Peroxidase/antagonistas & inibidores , Animais , Aorta/citologia , Biocatálise , Bovinos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células HL-60 , Halogenação/efeitos dos fármacos , Humanos , Ácido Hipocloroso/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Neutrófilos/enzimologia , Nitratos/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/toxicidade , Oxirredução , Peroxidase/metabolismo
16.
Eur J Pediatr Surg ; 23(1): 39-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165517

RESUMO

INTRODUCTION: Inflammation in the premature intestine is a key factor that leads to the development of necrotizing enterocolitis (NEC). Activation of nuclear factor kappa B (NF-κB) and subsequent inflammation increases the severity of NEC. The aim of this study was to investigate the early temporal expression of inflammatory markers and activation of NF-κB in a neonatal rat model of NEC. METHODS: Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed at birth, 1.5, 4, 8, and 24 hours after receiving their first feed. Control pups were vaginally delivered and mother fed; NEC was induced by a combination of gavage feeding formula, hypoxia, and enteral lipopolysaccharide (LPS); and formula fed pups were fed every 4 hours with infant formula. Ileal tissue was collected for immunohistochemistry, real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay. Serum was collected for cytokine content. Fold change of expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, IL-6, tumor necrosis factor-α (TNF-α), IL-10, NF-κB p65, and IκBα used RT-PCR. Data were analyzed by paired two-tailed t test, expressed as mean ± standard error of the mean, and p ≤ 0.05 considered significant. RESULTS: No histologic injury was evident in ileal sections. At 1.5 h, iNOS expression increased twofold over control in NEC pups (2.1 vs. 1.0, p ≤ 0.05) and remained elevated at 24 h (0.7 vs. 9.4, p ≤ 0.05). IL-1ß and IL-6 reached a peak at 24 h in NEC tissue compared with control. IL-10 expression rose in NEC pups after 4 h of insult and remained elevated in formula and NEC stressed pups. Coincident with an increase in p65 translocation into the nucleus and a reduction of IκBα detected in the cytoplasm, increased transcription of IκBα occurs. CONCLUSION: These findings suggest that NF-κB activation initiates inflammation early in the course of NEC resulting in increased proinflammatory protein expression, underscoring the importance of the inflammatory response in this NEC model, which precedes evidence of histological injury.


Assuntos
Citocinas/sangue , Nutrição Enteral/efeitos adversos , Enterocolite Necrosante/etiologia , Íleo/metabolismo , Fórmulas Infantis , Estresse Fisiológico/fisiologia , Fator de Transcrição RelA/metabolismo , Animais , Biomarcadores/metabolismo , Enterocolite Necrosante/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Hipóxia , Imuno-Histoquímica , Recém-Nascido , Lipopolissacarídeos , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
17.
J Surg Res ; 180(1): 21-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23158403

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with an incidence of 0.5-2.4 cases per 1000 live births and a mortality rate between 10% and 50%. Neonates affected by NEC develop a septic injury that is associated with increased risk of neurological impairment due to intraventricular bleeding and chronic lung disease. Intestinal alkaline phosphatase (IAP) is an endogenous protein that has been shown to inactivate the endotoxin lipopolysaccharide (LPS), and has recently been used successfully as an adjunct to treat sepsis in adult patients. We tested the hypothesis that systemic, exogenous IAP will mitigate the inflammatory response as measured by serum levels of proinflammatory cytokines in a rat model of NEC. METHODS: Newborn Sprague-Dawley rats were divided into groups. Control pups were dam fed. NEC was induced by feeding formula containing LPS and exposure to intermittent hypoxia. NEC pups were given intraperitoneal injections of 4 or 40 glycine units (U) of IAP or placebo twice daily. Intestine and serum was collected for cytokine analysis as well as measurement of alkaline phosphatase activity. RESULTS: Systemic IAP administration significantly increased serum alkaline phosphatase activity in a dose- and time-dependent fashion. The proinflammatory cytokines tumor necrosis factor α, interleukin 6, and interleukin 1ß were significantly increased in NEC rats versus controls on days 2 and 3. Importantly, treatment with 40 U systemic IAP decreased these proinflammatory cytokines back to near-control levels. CONCLUSIONS: Systemic IAP administration appears effective in mitigating the systemic inflammatory response associated with NEC, and may prove to be a valuable adjunctive treatment for NEC.


Assuntos
Fosfatase Alcalina/uso terapêutico , Enterocolite Necrosante/tratamento farmacológico , Intestinos/enzimologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Fosfatase Alcalina/sangue , Animais , Animais Recém-Nascidos , Citocinas/sangue , Enterocolite Necrosante/imunologia , Ratos , Ratos Sprague-Dawley
18.
Am J Physiol Heart Circ Physiol ; 304(2): H328-36, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23125208

RESUMO

Hemolysis can saturate the hemoglobin (Hb)/heme scavenging system, resulting in increased circulating cell-free Hb (CF-Hb) in hereditary and acquired hemolytic disease. While recent studies have suggested a central role for intravascular hemolysis and CF-Hb in the development of vascular dysfunction, this concept has stimulated considerable debate. This highlights the importance of determining the contribution of CF-Hb to vascular complications associated with hemolysis. Therefore, a novel Hb-binding peptide was synthesized and linked to a small fragment of apolipoprotein E (amino acids 141-150) to facilitate endocytic clearance. Plasma clearance of hE-Hb-b10 displayed a rapid phase t(1/2) of 16 min and slow phase t(1/2) of 10 h, trafficking primarily through the liver. Peptide hE-Hb-B10 decreased CF-Hb in mice treated with phenylhydrazine, a model of acute hemolysis. Administration of hE-Hb-B10 also attenuated CF-Hb in two models of chronic hemolysis: Berkeley sickle cell disease (SS) mice and mice with severe hereditary spherocytosis (HS). The hemolytic rate was unaltered in either chronic hemolysis model, supporting the conclusion that hE-Hb-B10 promotes CF-Hb clearance without affecting erythrocyte lysis. Interestingly, hE-Hb-B10 also decreased plasma ALT activity in SS and HS mice. Although acetylcholine-mediated facialis artery vasodilation was not improved by hE-Hb-B10 treatment, the peptide shifted vascular response in favor of NO-dependent vasodilation in SS mice. Taken together, these data demonstrate that hE-Hb-B10 decreases CF-Hb with a concomitant reduction in liver injury and changes in vascular response. Therefore, hE-Hb-B10 can be used to investigate the different roles of CF-Hb in hemolytic pathology and may have therapeutic benefit in the treatment of CF-Hb-mediated tissue damage.


Assuntos
Anemia Hemolítica/tratamento farmacológico , Apolipoproteínas E/farmacologia , Endocitose/efeitos dos fármacos , Hemoglobinas/metabolismo , Hemólise , Fígado/efeitos dos fármacos , Doença Aguda , Anemia Hemolítica/sangue , Anemia Hemolítica/etiologia , Anemia Hemolítica/fisiopatologia , Anemia Falciforme/sangue , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Animais , Apolipoproteínas E/sangue , Apolipoproteínas E/farmacocinética , Doença Crônica , Modelos Animais de Doenças , Meia-Vida , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/farmacologia , Peptídeos/sangue , Peptídeos/farmacologia , Fenil-Hidrazinas , Ligação Proteica , Transporte Proteico , Esferocitose Hereditária/sangue , Esferocitose Hereditária/complicações , Esferocitose Hereditária/tratamento farmacológico , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
19.
Photochem Photobiol ; 89(3): 709-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23231468

RESUMO

The tight skin mouse (Tsk(-/+)) is a model of scleroderma characterized by impaired vasoreactivity, increased oxidative stress, attenuated angiogenic response to VEGF and production of the angiogenesis inhibitor angiostatin. Low-level light therapy (LLLT) stimulates angiogenesis in myocardial infarction and chemotherapy-induced mucositis. We hypothesize that repetitive LLLT restores vessel growth in the ischemic hindlimb of Tsk(-/+) mice by attenuating angiostatin and enhancing angiomotin effects in vivo. C57Bl/6J and Tsk(-/+) mice underwent ligation of the femoral artery. Relative blood flow to the foot was measured using a laser Doppler imager. Tsk(-/+) mice received LLLT (670 nm, 50 mW cm(-2), 30 J cm(-2)) for 10 min per day for 14 days. Vascular density was determined using lycopersicom lectin staining. Immunofluorescent labeling, Western blot analysis and immunoprecipitation were used to determine angiostatin and angiomotin expression. Recovery of blood flow to the ischemic limb was reduced in Tsk(-/+) compared with C57Bl/6 mice 2 weeks after surgery. LLLT treatment of Tsk(-/+) mice restored blood flow to levels observed in C57Bl/6 mice. Vascular density was decreased, angiostatin expression was enhanced and angiomotin depressed in the ischemic hindlimb of Tsk(-/+) mice. LLLT treatment reversed these abnormalities. LLLT stimulates angiogenesis by increasing angiomotin and decreasing angiostatin expression in the ischemic hindlimb of Tsk(-/+) mice.


Assuntos
Capilares/efeitos da radiação , Artéria Femoral/efeitos da radiação , Membro Posterior/efeitos da radiação , Isquemia/terapia , Luz , Escleroderma Sistêmico/terapia , Angiomotinas , Angiostatinas/genética , Angiostatinas/metabolismo , Animais , Capilares/fisiopatologia , Modelos Animais de Doenças , Artéria Femoral/fisiopatologia , Regulação da Expressão Gênica/efeitos da radiação , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Isquemia/metabolismo , Isquemia/fisiopatologia , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neovascularização Fisiológica , Recuperação de Função Fisiológica , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/fisiopatologia
20.
PLoS One ; 7(12): e52046, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251680

RESUMO

The apoAI mimetic 4F was designed to inhibit atherosclerosis by improving HDL. We reported that treating tight skin (Tsk(-/+)) mice, a model of systemic sclerosis (SSc), with 4F decreases inflammation and restores angiogenic potential in Tsk(-/+) hearts. Interferon regulating factor 5 (IRF5) is important in autoimmunity and apoptosis in immune cells. However, no studies were performed investigating IRF5 in myocardium. We hypothesize that 4F differentially modulates IRF5 expression and activation in Tsk(-/+) hearts. Posterior wall thickness was significantly increased in Tsk(-/+) compared to C57Bl/6J (control) and Tsk(-/+) mice with 4F treatment assessed by echoradiography highlighting reduction of fibrosis in 4F treated Tsk(-/+) mice. IRF5 in heart lysates from control and Tsk/+ with and without 4F treatment (sc, 1 mg/kg/d, 6-8 weeks) was determined. Phosphoserine, ubiquitin, ubiquitin K(63) on IRF5 were determined on immunoprecipitates of IRF5. Immunofluorescence and TUNEL assays in heart sections were used to determine positive nuclei for IRF5 and apoptosis, respectively. Fluorescence-labeled streptavidin (SA) was used to determine endothelial cell uptake of biotinylated 4F. SA-agarose pulldown and immunoblotting for IRF5 were used to determine 4F binding IRF5 in endothelial cell cytosolic fractions and to confirm biolayer interferometry studies. IRF5 levels in Tsk(-/+) hearts were similar to control. 4F treatments decrease IRF5 in Tsk(-/+) hearts and decrease phosphoserine and ubiquitin K(63) but increase total ubiquitin on IRF5 in Tsk(-/+) compared with levels on IRF5 in control hearts. 4F binds IRF5 by mechanisms favoring association over dissociation strong enough to pull down IRF5 from a mixture of endothelial cell cytosolic proteins. IRF5 positive nuclei and apoptotic cells in Tsk(-/+) hearts were increased compared with controls. 4F treatments decreased both measurements in Tsk(-/+) hearts. IRF5 activation in Tsk(-/+) hearts is increased. 4F treatments decrease IRF5 expression and activation in Tsk(-/+) hearts by a mechanism related to 4F's ability to bind IRF5.


Assuntos
Apolipoproteína A-I/farmacologia , Coração/efeitos dos fármacos , Fatores Reguladores de Interferon/antagonistas & inibidores , Miocárdio/metabolismo , Peptídeos/farmacologia , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Modelos Animais de Doenças , Ecocardiografia/métodos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibrose/tratamento farmacológico , Fibrose/genética , Fibrose/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Fatores Reguladores de Interferon/biossíntese , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfosserina/metabolismo , Escleroderma Sistêmico/genética , Pele/patologia , Ubiquitina/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA