Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cardiothorac Vasc Anesth ; 35(11): 3248-3254, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33663977

RESUMO

OBJECTIVE(S): Throughout the last several decades, the perioperative mortality rate from anesthesia care has declined, shifting focus to perioperative emergencies. Data on these emergencies, often referred to as "Anesthesia STAT" calls (STATs), are lacking at adult hospitals. The goal of this study was to determine the etiology of STATs at a major academic medical center and to determine surgical cases and patient comorbid conditions that increase the risk for STATs. DESIGN: This was a retrospective observational study. SETTING: This study took place at a large academic medical center. PARTICIPANTS: Patients who underwent anesthesia care were included in this study. INTERVENTIONS: No interventions were performed during this study. MEASUREMENTS AND MAIN RESULTS: Data collected included the etiologies of STATs, patient demographic information, patient comorbid conditions, and surgeries during which STATs occurred. Between February 1, 2019, and January 31, 2020, 92 STATs occurred during 58,547 anesthetic cases, with an incidence rate of 0.16%. The most common etiology for a STAT was cardiac arrest, followed by respiratory compromise. Surgical services associated with a significant increase of STATs included general, thoracic, oral/maxillofacial, and vascular surgery. Comorbid conditions that significantly increased the risk of STATs included hypertension, coronary artery disease, congestive heart failure, obstructive sleep apnea, diabetes, and chronic kidney disease. CONCLUSIONS: Cardiac arrest is the most common etiology of STATs. Specific surgical services and comorbid conditions are associated with an increased risk of STATs.


Assuntos
Anestesia , Parada Cardíaca , Adulto , Anestesia/efeitos adversos , Emergências , Humanos , Incidência , Complicações Pós-Operatórias , Estudos Retrospectivos , Fatores de Risco
2.
Biochim Biophys Acta ; 1863(1): 1-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26469128

RESUMO

Previous studies in our laboratory have shown that the neuron-specific specificity protein 4 (Sp4) transcriptionally regulates many excitatory neurotransmitter receptor subunit genes, such as those for GluN1, GluN2A, and GluN2B of N-methyl-d-aspartate (NMDA) receptors and Gria2 of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. It also regulates Atp1a1 and Atp1b1 subunit genes of Na(+)/K(+)-ATPase, a major energy-consuming enzyme, as well as all 13 subunits of cytochrome c oxidase (COX), an important energy-generating enzyme. Thus, there is a tight coupling between energy consumption, energy production, and excitatory neuronal activity at the transcriptional level in neurons. The question is whether inhibitory neurotransmitter receptors are also regulated by Sp4. In the present study, we tested our hypothesis that Sp4 regulates receptor subunit genes of a major inhibitory neurotransmitter, GABA, specifically GABAA receptors. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, real-time quantitative PCR, chromatin immunoprecipitation, promoter mutational analysis, over-expression and shRNA of Sp4, functional assays, and western blots, we found that Sp4 functionally regulates the transcription of Gabra1 (GABAA α1) and Gabra2 (GABAA α2), but not Gabra3 (GABAA α3) subunit genes. The binding sites of Sp4 are conserved among rats, humans, and mice. Thus, our results substantiate our hypothesis that Sp4 plays a key role in regulating the transcription of GABAA receptor subunit genes. They also indicate that Sp4 is in a position to transcriptionally regulate the balance between excitatory and inhibitory neurochemical expressions in neurons.


Assuntos
Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de N-Metil-D-Aspartato/biossíntese , Fator de Transcrição Sp4/metabolismo , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Neurônios GABAérgicos/citologia , Camundongos , Ratos , Receptores de AMPA/biossíntese , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , ATPase Trocadora de Sódio-Potássio/biossíntese , ATPase Trocadora de Sódio-Potássio/genética , Fator de Transcrição Sp4/genética
3.
Biochim Biophys Acta ; 1843(6): 1196-206, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24576410

RESUMO

The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are important glutamatergic receptors mediating fast excitatory synaptic transmission in the brain. The regulation of the four subunits of AMPA receptors, GluA1-4, is poorly understood. Excitatory synaptic transmission is highly energy-demanding, and this energy is derived mainly from the oxidative pathway. Recently, we found that specificity factor regulates all subunits of cytochrome c oxidase (COX), a critical energy-generating enzyme. COX is also regulated by nuclear respiratory factor 1 (NRF-1), which transcriptionally controls the Gria2 (GluA2) gene of AMPA receptors. The goal of the present study was to test our hypothesis that Sp-factors (Sp1, Sp3, and/or Sp4) also regulate AMPA subunit genes. If so, we wish to determine if Sp-factors and NRF-1 function via a complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel mechanism. By means of multiple approaches, including electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutations, real-time quantitative PCR, and western blot analysis, we found that Sp4, but not Sp1 or Sp3, regulates the Gria2, but not Gria1, 3, or 4, subunit gene of the AMPA receptor in a concurrent and parallel manner with NRF-1. Thus, Sp4 and NRF-1 both mediate the tight coupling between neuronal activity and energy metabolism at the transcriptional level.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Receptores de AMPA/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Fator de Transcrição Sp4/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Western Blotting , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Neuroblastoma/metabolismo , Regiões Promotoras Genéticas/genética , Subunidades Proteicas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de AMPA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp4/genética , Transcrição Gênica , Células Tumorais Cultivadas
4.
Eur J Neurosci ; 39(4): 566-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24219545

RESUMO

A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons.


Assuntos
Metabolismo Energético , Potenciais da Membrana , Neurônios/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Transcrição Sp4/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Camundongos , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Cloreto de Potássio/farmacologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , ATPase Trocadora de Sódio-Potássio/genética , Fator de Transcrição Sp4/química , Fator de Transcrição Sp4/genética , Tetrodotoxina/farmacologia
5.
J Neurochem ; 127(4): 496-508, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24032355

RESUMO

Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons.


Assuntos
Núcleo Celular/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genoma Mitocondrial , Neurônios/metabolismo , Fator de Transcrição Sp4/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fator de Transcrição Sp4/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Córtex Visual/citologia
6.
Biochim Biophys Acta ; 1833(1): 48-58, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085505

RESUMO

Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level.


Assuntos
Metabolismo Energético/genética , Fator de Transcrição de Proteínas de Ligação GA/fisiologia , Fator 1 Nuclear Respiratório/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica/genética , Animais , Células Cultivadas , Metabolismo Energético/fisiologia , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Neurônios/metabolismo , Neurônios/fisiologia , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/genética , Transmissão Sináptica/fisiologia
7.
J Biol Chem ; 287(48): 40381-90, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23048038

RESUMO

BACKGROUND: NRF-1 regulates mediators of neuronal activity and energy generation. RESULTS: NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and ß1. CONCLUSION: NRF-1 functionally regulates mediators of energy consumption in neurons. SIGNIFICANCE: NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.


Assuntos
Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Neurônios/enzimologia , Fator 1 Nuclear Respiratório/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Fator 1 Nuclear Respiratório/genética , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , ATPase Trocadora de Sódio-Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA