Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 384, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659083

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity. METHODS: This retrospective study examined cell culture supernatants from the manufacture of CAR T-cells for 20 patients with B-cell malignancies enrolled in a phase 1/2 clinical trial of anti-CD22 CAR T-cells. MetaFLEX was used to measure supernatant pH, oxygenation, and metabolites, and a Bio-Plex assay was used to assess protein levels. Correlations were assessed between the pH of cell culture media throughout manufacturing and cell proliferation as well as clinical outcomes. Next-generation sequencing was conducted to examine gene expression profiles of the final CAR T-cell products. RESULTS: A pH level at the lower range of normal at the beginning of the manufacturing process significantly correlated with measures of T-cell expansion and metabolism. Stable or rising pH during the manufacturing process was associated with clinical response, whereas a drop in pH was associated with non-response. CONCLUSIONS: pH has potential to serve as an informative factor in predicting CAR T-cell quality and clinical outcomes. Thus, its active monitoring during manufacturing may ensure a more effective CAR T-cell product.


Assuntos
Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T , Humanos , Concentração de Íons de Hidrogênio , Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Proliferação de Células , Técnicas de Cultura de Células
2.
Cytotherapy ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38625071

RESUMO

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown. We compared 4 commonly used T cell manufacturing platforms (CliniMACS Prodigy, Xuri W25 rocking platform, G-Rex gas-permeable bioreactor, static bag culture) using identical media, stimulation, culture length, and donor starting material. Selected CD4+CD8+ cells were transduced with lentiviral vector incorporating a CAR targeting FGFR4, a promising target for pediatric sarcoma. We observed significant differences in overall expansion over the 14-day culture; bag cultures had the highest capacity for expansion while the Prodigy had the lowest (481-fold versus 84-fold, respectively). Strikingly, we also observed considerable differences in the phenotype of the final product, with the Prodigy significantly enriched for CCR7+CD45RA+ naïve/stem central memory (Tn/scm)-like cells at 46% compared to bag and G-Rex with 16% and 13%, respectively. Gene expression analysis also showed that Prodigy CAR-Ts are more naïve, less cytotoxic and less exhausted than bag, G-Rex, and Xuri CAR-Ts, and pointed to differences in cell metabolism that were confirmed via metabolic assays. We hypothesized that dissolved oxygen level, which decreased substantially during the final 3 days of the Prodigy culture, may contribute to the observed differences in T cell phenotype. By culturing bag and G-Rex cultures in 1% O2 from day 5 onward, we could generate >60% Tn/scm-like cells, with longer time in hypoxia correlating with a higher percentage of Tn/scm-like cells. Intriguingly, our results suggest that oxygenation is responsible, at least in part, for observed differences in T cell phenotype among bioreactors and suggest hypoxic culture as a potential strategy prevent T cell differentiation during expansion. Ultimately, our study demonstrates that selection of bioreactor system may have profound effects not only on the capacity for expansion, but also on the differentiation state of the resulting CAR-T cells.

3.
Curr Protoc ; 4(2): e980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385868

RESUMO

The skeletal system mirrors several processes in the vertebrate body that impact developmental malfunctions, hormonal disbalance, malfunction of calcium metabolism and turn over, and inflammation processes such as arthrosis. X-ray micro computed tomography is a useful tool for 3D in situ evaluation of the skeletal system in a time-related manner, but results depend highly on resolution. Here, we provide the methodological background for a graduated evaluation from whole-body analysis of skeletal morphology and mineralization to high-resolution analysis of femoral and vertebral microstructure. We combine an expert-based evaluation with a machine-learning-based computational approach, including pre-setup analytical task lists. © 2024 Wiley Periodicals LLC. Basic Protocol 1: In vivo microCT scanning and skeletal analysis in mice Basic Protocol 2: Ex vivo high-resolution microCT scanning and microstructural analysis of the femur and L4 vertebra.


Assuntos
Calcinose , Animais , Camundongos , Microtomografia por Raio-X , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Vértebras Lombares
4.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38298420

RESUMO

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

5.
Cytotherapy ; 25(4): 442-450, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710226

RESUMO

BACKGROUND AIMS: Hematopoietic stem cell transplantation using bone marrow as the graft source is a common treatment for hematopoietic malignancies and disorders. For allogeneic transplants, processing of bone marrow requires the depletion of ABO-mismatched red blood cells (RBCs) to avoid transfusion reactions. Here the authors tested the use of an automated closed system for depleting RBCs from bone marrow and compared the results to a semi-automated platform that is more commonly used in transplant centers today. The authors found that fully automated processing using the Sepax instrument (Cytiva, Marlborough, MA, USA) resulted in depletion of RBCs and total mononuclear cell recovery that were comparable to that achieved with the COBE 2991 (Terumo BCT, Lakewood, CO, USA) semi-automated process. METHODS: The authors optimized the fully automated and closed Sepax SmartRedux (Cytiva) protocol. Three reduction folds (10×, 12× and 15×) were tested on the Sepax. Each run was compared with the standard processing performed in the authors' center on the COBE 2991. Given that bone marrow is difficult to acquire for these purposes, the authors opted to create a surrogate that is more easily obtainable, which consisted of cryopreserved peripheral blood stem cells that were thawed and mixed with RBCs and supplemented with Plasma-Lyte A (Baxter, Deerfield, IL, USA) and 4% human serum albumin (Baxalta, Westlake Village, CA, USA). This "bone marrow-like" product was split into two starting products of approximately 600 mL, and these were loaded onto the COBE and Sepax for direct comparison testing. Samples were taken from the final products for cell counts and flow cytometry. The authors also tested a 10× Sepax reduction using human bone marrow supplemented with human liquid plasma and RBCs. RESULTS: RBC reduction increased as the Sepax reduction rate increased, with an average of 86.06% (range of 70.85-96.39%) in the 10×, 98.80% (range of 98.1-99.5%) in the 12× and 98.89% (range of 98.80-98.89%) in the 15×. The reduction rate on the COBE ranged an average of 69.0-93.15%. However, white blood cell (WBC) recovery decreased as the Sepax reduction rate increased, with an average of 47.65% (range of 38.9-62.35%) in the 10×, 14.56% (range of 14.34-14.78%) in the 12× and 27.97% (range of 24.7-31.23%) in the 15×. COBE WBC recovery ranged an average of 53.17-76.12%. Testing a supplemented human bone marrow sample using a 10× Sepax reduction resulted in an average RBC reduction of 84.22% (range of 84.0-84.36%) and WBC recovery of 43.37% (range of 37.48-49.26%). Flow cytometry analysis also showed that 10× Sepax reduction resulted in higher purity and better recovery of CD34+, CD3+ and CD19+ cells compared with 12× and 15× reduction. Therefore, a 10× reduction rate was selected for the Sepax process. CONCLUSIONS: The fully automated and closed SmartRedux program on the Sepax was shown to be effective at reducing RBCs from "bone marrow-like" products and a supplemented bone marrow product using a 10× reduction rate.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Humanos , Eritrócitos , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Medula Óssea , Citometria de Fluxo
6.
J Transl Med ; 20(1): 338, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902861

RESUMO

BACKGROUND: Cytokine release syndrome (CRS) is a strong immune system response that can occur as a result of the reaction of a cellular immunotherapy with malignant cells. While the frequency and management of CRS in CAR T-cell therapy has been well documented, there is emerging interest in pre-emptive treatment to reduce CRS severity and improve overall outcomes. Accordingly, identification of genomic determinants that contribute to cytokine release may lead to the development of targeted therapies to prevent or abrogate the severity of CRS. METHODS: Forty three clinical CD22 CAR T-cell products were collected for RNA extraction. 100 ng of mRNA was used for Nanostring assay analysis which is based on the nCounter platform. Several public datasets were used for validation purposes. RESULTS: We found the expression of the PFKFB4 gene and glycolytic pathway activity were upregulated in CD22 CAR T-cells given to patients who developed CRS compared to those who did not experience CRS. Moreover, these results were further validated in cohorts with COVID-19, influenza infections and autoimmune diseases, and in tumor tissues. The findings were similar, except that glycolytic pathway activity was not increased in patients with influenza infections and systemic lupus erythematosus (SLE). CONCLUSION: Our data strongly suggests that PFKFB4 acts as a driving factor in mediating cytokine release in vivo by regulating glycolytic activity. Our results suggest that it would beneficial to develop drugs targeting PFKFB4 and the glycolytic pathway for the treatment of CRS.


Assuntos
COVID-19 , Influenza Humana , COVID-19/terapia , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Genômica , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Fosfofrutoquinase-2 , Receptores de Antígenos Quiméricos
7.
J Transl Med ; 19(1): 523, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952597

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) or T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for the treatment of hematologic malignancies and solid tumors. Multiparametric flow cytometry-based assays play a critical role in monitoring cellular manufacturing steps. Since manufacturing CAR/TCR T-cell products must be in compliance with current good manufacturing practices (cGMP), a standard or quality control for flow cytometry assays should be used to ensure the accuracy of flow cytometry results, but none is currently commercially available. Therefore, we established a procedure to generate an in-house cryopreserved CAR/TCR T-cell products for use as a flow cytometry quality control and validated their use. METHODS: Two CAR T-cell products: CD19/CD22 bispecific CAR T-cells and FGFR4 CAR T-cells and one TCR-engineered T-cell product: KK-LC-1 TCR T-cells were manufactured in Center for Cellular Engineering (CCE), NIH Clinical Center. The products were divided in aliquots, cryopreserved and stored in the liquid nitrogen. The cryopreserved flow cytometry quality controls were tested in flow cytometry assays which measured post-thaw viability, CD3, CD4 and CD8 frequencies as well as the transduction efficiency and vector identity. The long-term stability and shelf-life of cryopreserved quality control cells were evaluated. In addition, the sensitivity as well as the precision assay were also assessed on the cryopreserved quality control cells. RESULTS: After thawing, the viability of the cryopreserved CAR/TCR T-cell controls was found to be greater than 50%. The expression of transduction efficiency and vector identity markers by the cryopreserved control cells were stable for at least 1 year; with post-thaw values falling within ± 20% range of the values measured at time of cryopreservation. After thawing and storage at room temperature, the stability of these cryopreserved cells lasted at least 6 h. In addition, our cryopreserved CAR/TCR-T cell quality controls showed a strong correlation between transduction efficiency expression and dilution factors. Furthermore, the results of flow cytometric analysis of the cryopreserved cells among different laboratory technicians and different flow cytometry instruments were comparable, highlighting the reproducibility and reliability of these quality control cells. CONCLUSION: We developed and validated a feasible and reliable procedure to establish a bank of cryopreserved CAR/TCR T-cells for use as flow cytometry quality controls, which can serve as a quality control standard for in-process and lot-release testing of CAR/TCR T-cell products.


Assuntos
Receptores de Antígenos Quiméricos , Criopreservação/métodos , Citometria de Fluxo/métodos , Imunoterapia Adotiva/métodos , Controle de Qualidade , Receptores de Antígenos de Linfócitos T , Reprodutibilidade dos Testes , Linfócitos T
8.
J Transl Med ; 19(1): 474, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819105

RESUMO

BACKGROUND: Gene transfer is an important tool for cellular therapies. Lentiviral vectors are most effectively transferred into lymphocytes or hematopoietic progenitor cells using spinoculation. To enable cGMP (current Good Manufacturing Practice)-compliant cell therapy production, we developed and compared a closed-system spinoculation method that uses cell culture bags, and an automated closed system spinoculation method to decrease technician hands on time and reduce the likelihood for microbial contamination. METHODS: Sepax spinoculation, bag spinoculation, and static bag transduction without spinoculation were compared for lentiviral gene transfer in lymphocytes collected by apheresis. The lymphocytes were transduced once and cultured for 9 days. The lentiviral vectors tested encoded a CD19/CD22 Bispecific Chimeric Antigen Receptor (CAR), a FGFR4-CAR, or a CD22-CAR. Sepax spinoculation times were evaluated by testing against bag spinoculation and static transduction to optimize the Sepax spin time. The Sepax spinoculation was then used to test the transduction of different CAR vectors. The performance of the process using healthy donor and a patient sample was evaluated. Functional assessment was performed of the CD19/22 and CD22 CAR T-cells using killing assays against the NALM6 tumor cell line and cytokine secretion analysis. Finally, gene expression of the transduced T-cells was examined to determine if there were any major changes that may have occurred as a result of the spinoculation process. RESULTS: The process of spinoculation lead to significant enhancement in gene transfer. Sepax spinoculation using a 1-h spin time showed comparable transduction efficiency to the bag spinoculation, and much greater than the static bag transduction method (83.4%, 72.8%, 35.7% n = 3). The performance of three different methods were consistent for all lentiviral vectors tested and no significant difference was observed when using starting cells from healthy donor versus a patient sample. Sepax spinoculation does not affect the function of the CAR T-cells against tumor cells, as these cells appeared to kill target cells equally well. Spinoculation also does not appear to affect gene expression patterns that are necessary for imparting function on the cell. CONCLUSIONS: Closed system-bag spinoculation resulted in more efficient lymphocyte gene transfer than standard bag transductions without spinoculation. This method is effective for both retroviral and lentiviral vector gene transfer in lymphocytes and may be a feasible approach for gene transfer into other cell types including hematopoietic and myeloid progenitors. Sepax spinoculation further improved upon the process by offering an automated, closed system approach that significantly decreased hands-on time while also decreasing the risk of culture bag tears and microbial contamination.


Assuntos
Receptores de Antígenos Quiméricos , Antígenos CD19 , Terapia Genética , Humanos , Imunoterapia Adotiva , Linfócitos T , Transdução Genética
9.
Eur J Paediatr Neurol ; 34: 105-109, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34464766

RESUMO

Alternating Hemiplegia of Childhood (AHC), Rapid-onset Dystonia-Parkinsonism (RDP), and CAPOS syndrome (Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss) are all caused by mutations in the same gene: ATP1A3. Although initially they were considered separate disorders, recent evidence suggests a continuous clinical spectrum of ATP1A3-related disorders. At onset all these disorders can present with acute brainstem dysfunction triggered by a febrile illness. An infectious or autoimmune disorder is usually suspected. A genetic disorder is rarely considered in the first acute episode. We present three patients with ATP1A3 mutations: one patient with AHC, one patient with RDP, and one patient with CAPOS syndrome. We describe the acute onset and overlapping clinical features of these three patients with classical phenotypes. These cases highlight ATP1A3-related disorders as a possible cause of acute brainstem dysfunction with normal ancillary testing.


Assuntos
Ataxia Cerebelar , Distúrbios Distônicos , Tronco Encefálico , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Diagnóstico Diferencial , Distúrbios Distônicos/diagnóstico , Humanos , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética
10.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032267

RESUMO

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.


Assuntos
Plexo Corióideo/embriologia , Epitélio/metabolismo , Quarto Ventrículo/embriologia , Proteína Meis1/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Encéfalo/embriologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais/fisiologia , Proteína Wnt-5a/genética
11.
Cell ; 184(11): 3056-3074.e21, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33932339

RESUMO

The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1ß (IL-1ß) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.


Assuntos
Plexo Corióideo/embriologia , Plexo Corióideo/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Encefalopatias/genética , Encefalopatias/fisiopatologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Plexo Corióideo/fisiologia , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única
12.
Front Genet ; 9: 542, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505318

RESUMO

Members of the fibroblast growth factor (FGF) family have myriad functions during development of both non-vertebrate and vertebrate organisms. One of these family members, FGF10, is largely expressed in mesenchymal tissues and is essential for postnatal life because of its critical role in development of the craniofacial complex, as well as in lung branching. Here, we review the function of FGF10 in morphogenesis of craniofacial organs. Genetic mouse models have demonstrated that the dysregulation or absence of FGF10 function affects the process of palate closure, and FGF10 is also required for development of salivary and lacrimal glands, the inner ear, eye lids, tongue taste papillae, teeth, and skull bones. Importantly, mutations within the FGF10 locus have been described in connection with craniofacial malformations in humans. A detailed understanding of craniofacial defects caused by dysregulation of FGF10 and the precise mechanisms that underlie them offers new opportunities for development of medical treatments for patients with birth defects and for regenerative approaches for cancer patients with damaged gland tissues.

13.
Hum Mol Genet ; 27(11): 1955-1971, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788202

RESUMO

Angelman syndrome is a complex neurodevelopmental disorder caused by the lack of function in the brain of a single gene, UBE3A. The E3 ligase coded by this gene is known to build K48-linked ubiquitin chains, a modification historically considered to target substrates for degradation by the proteasome. However, a change in protein abundance is not proof that a candidate UBE3A substrate is indeed ubiquitinated by UBE3A. We have here used an unbiased ubiquitin proteomics approach, the bioUb strategy, to identify 79 proteins that appear more ubiquitinated in the Drosophila photoreceptor cells when Ube3a is over-expressed. We found a significantly high number of those proteins to be proteasomal subunits or proteasome-interacting proteins, suggesting a wide proteasomal perturbation in the brain of Angelman patients. We focused on validating the ubiquitination by Ube3a of Rngo, a proteasomal component conserved from yeast (Ddi1) to humans (DDI1 and DDI2), but yet scarcely characterized. Ube3a-mediated Rngo ubiquitination in fly neurons was confirmed by immunoblotting. Using human neuroblastoma SH-SY5Y cells in culture, we also observed that human DDI1 is ubiquitinated by UBE3A, without being targeted for degradation. The novel observation that DDI1 is expressed in the developing mice brain, with a significant peak at E16.5, strongly suggests that DDI1 has biological functions not yet described that could be of relevance for Angelman syndrome clinical research.


Assuntos
Síndrome de Angelman/genética , Ácido Aspártico Proteases/genética , Proteínas de Drosophila/genética , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/fisiopatologia , Animais , Drosophila , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação/genética
14.
Sci Rep ; 8(1): 5135, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572512

RESUMO

Trypanosoma brucei is an extracellular parasite that alternates between an insect vector (procyclic form) and the bloodstream of a mammalian host (bloodstream form). While it was previously reported that mitochondrial release factor 1 (TbMrf1) is essential in cultured procyclic form cells, we demonstrate here that in vitro bloodstream form cells can tolerate the elimination of TbMrf1. Therefore, we explored if this discrepancy is due to the unique bioenergetics of the parasite since procyclic form cells rely on oxidative phosphorylation; whereas bloodstream form cells utilize glycolysis for ATP production and FoF1-ATPase to maintain the essential mitochondrial membrane potential. The observed disruption of intact bloodstream form FoF1-ATPases serves as a proxy to indicate that the translation of its mitochondrially encoded subunit A6 is impaired without TbMrf1. While these null mutants have a decreased mitochondrial membrane potential, they have adapted by increasing their dependence on the electrogenic contributions of the ADP/ATP carrier to maintain the mitochondrial membrane potential above the minimum threshold required for T. brucei viability in vitro. However, this inefficient compensatory mechanism results in avirulent mutants in mice. Finally, the depletion of the codon-independent release factor TbPth4 in the TbMrf1 knockouts further exacerbates the characterized mitchondrial phenotypes.


Assuntos
Adaptação Fisiológica , Estágios do Ciclo de Vida , Potencial da Membrana Mitocondrial/genética , Mitocôndrias , Proteínas Mitocondriais/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
15.
J Innate Immun ; 8(4): 330-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26987072

RESUMO

(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.


Assuntos
Imunidade Adaptativa , Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fibrose Cística/tratamento farmacológico , Imunidade Inata , Dor/tratamento farmacológico , Purinas/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Fibrose Cística/imunologia , Humanos , Imunomodulação , Neoplasias/tratamento farmacológico , Roscovitina
16.
Dev Cell ; 35(6): 713-24, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26702830

RESUMO

The proper positioning of organs during development is essential, yet little is known about the regulation of this process in mammals. Using murine tooth development as a model, we have found that cell migration plays a central role in positioning of the organ primordium. By combining lineage tracing, genetic cell ablation, and confocal live imaging, we identified a migratory population of Fgf8-expressing epithelial cells in the embryonic mandible. These Fgf8-expressing progenitors furnish the epithelial cells required for tooth development, and the progenitor population migrates toward a Shh-expressing region in the mandible, where the tooth placode will initiate. Inhibition of Fgf and Shh signaling disrupted the oriented migration of cells, leading to a failure of tooth development. These results demonstrate the importance of intraepithelial cell migration in proper positioning of an initiating organ.


Assuntos
Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Dente Molar/embriologia , Morfogênese/fisiologia , Dente/citologia , Animais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Dente Molar/citologia , Dente Molar/metabolismo , Odontogênese/fisiologia , Dente/embriologia
17.
PLoS One ; 9(3): e90363, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658276

RESUMO

Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5-/- embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5-/- brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.


Assuntos
Encéfalo/metabolismo , Quinase 5 Dependente de Ciclina/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Linhagem Celular , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Deleção de Genes , Espectrometria de Massas , Camundongos , Substrato Quinase C Rico em Alanina Miristoilada , Fosfoproteínas/química , Fosforilação , Proteômica , Purinas/farmacologia , Roscovitina
18.
J Biol Chem ; 287(20): 16917-29, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22451679

RESUMO

In addition to many important roles for Cdk5 in brain development and synaptic function, we reported previously that Cdk5 regulates inflammatory pain signaling, partly through phosphorylation of transient receptor potential vanilloid 1 (TRPV1), an important Na(+)/Ca(2+) channel expressed in primary nociceptive afferent nerves. Because TGF-ß regulates inflammatory processes and its receptor is expressed in TRPV1-positive afferents, we studied the cross-talk between these two pathways in sensory neurons during experimental peripheral inflammation. We demonstrate that TGF-ß1 increases transcription and protein levels of the Cdk5 co-activator p35 through ERK1/2, resulting in an increase in Cdk5 activity in rat B104 neuroblastoma cells. Additionally, TGF-ß1 enhances the capsaicin-induced Ca(2+) influx in cultured primary neurons from dorsal root ganglia (DRG). Importantly, Cdk5 activity was reduced in the trigeminal ganglia and DRG of 14-day-old TGF-ß1 knock-out mice, resulting in reduced Cdk5-dependent phosphorylation of TRPV1. The decreased Cdk5 activity is associated with attenuated thermal hyperalgesia in TGF-ß1 receptor conditional knock-out mice, where TGF-ß signaling is significantly reduced in trigeminal ganglia and DRG. Collectively, our results indicate that active cross-talk between the TGF-ß and Cdk5 pathways contributes to inflammatory pain signaling.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Gânglios Espinais/metabolismo , Sistema de Sinalização das MAP Quinases , Células Receptoras Sensoriais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina/genética , Gânglios Espinais/patologia , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dor/genética , Dor/metabolismo , Dor/patologia , Fosforilação/genética , Ratos , Células Receptoras Sensoriais/patologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fator de Crescimento Transformador beta1/genética , Gânglio Trigeminal/patologia
19.
Neuro Endocrinol Lett ; 29(6): 953-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19112399

RESUMO

OBJECTIVES: Preemptive versus therapeutic effects of levetiracetam were investigated in a model of postoperative incisional pain in rats. METHODS: Levetiracetam (250, 500, and 1000 mg/kg intraperitoneal (i.p.) or morphine (5 mg/kg i.p.) was administered either 1 h before (preemptive administration) or 1 h after (therapeutic administration) incisional surgery to the hind paw of rats. The effects of levetiracetam were evaluated based on thermal hyperalgesia measured by the plantar test. RESULTS: All preoperatively treated levetiracetam groups showed a significant, dose dependent, increase in paw withdrawal latency. However, post-incisional administration of levetiracetam produced no antihyperalgesic effect at any dose or at any time. In contrast, post-incisional administration of morphine reduced thermal hyperalgesia, while preemptive administration of morphine did not produce any significant antihyperalgesic effects. CONCLUSION: The present results suggest that levetiracetam might possess preemptive analgesic activity.


Assuntos
Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Dor Pós-Operatória/prevenção & controle , Piracetam/análogos & derivados , Pré-Medicação , Analgésicos/administração & dosagem , Análise de Variância , Animais , Anticonvulsivantes/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Levetiracetam , Masculino , Morfina/administração & dosagem , Piracetam/administração & dosagem , Piracetam/farmacologia , Cuidados Pré-Operatórios , Distribuição Aleatória , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Resultado do Tratamento
20.
Basic Clin Pharmacol Toxicol ; 99(2): 173-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16918720

RESUMO

Levels of cyclooxygenase-2 (COX-2) mRNA, but not those of COX-1, were reported to be raised significantly after peripheral inflammation in the rat spinal cord. The aim of the present study was to ascertain whether this pattern of COX-2 and COX-1 expression applies also to other pain conditions induced by surgical procedure. Experiments were performed on two types of pain models. In a model of postoperative pain, 1 cm longitudinal incision was made through skin, fascia and muscle of the plantar aspect of the right hind paw in anaesthetized rats. In the second model, peripheral inflammation was induced by unilateral, intraplantar injection of carrageenan in the right hind paw. Carrageenan injection or skin incision produced marked and significant reduction of paw withdrawal latencies to noxious radiant heat stimuli after 2 and 6 hr. Under the acute inflammation 2 and 6 hr after carrageenan injection levels of COX-2 mRNA were markedly raised (7.8 and 15.5 times; P<0.001, respectively) while spinal levels of COX-1 mRNA were not significantly altered (n.s.). In contrast, spinal levels of COX-2 mRNA were raised less markedly in a model of postoperative pain (4.9 times at 2 hr; P<0.001 and 2.9 times (n.s.) at 6 hr after surgery) whilst levels of COX-1 mRNA in the lumbar spine were increased significantly (2.3 times; P<0.001) 6 hr after surgery. The present findings indicate that expression of COX-2 mRNA in the spine is less dominant in postoperative pain than in inflammatory pain and that spinal COX-1 mRNA is upregulated in postoperative pain.


Assuntos
Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Inflamação/enzimologia , Dor Pós-Operatória/enzimologia , RNA Mensageiro/genética , Medula Espinal/enzimologia , Animais , Carragenina/administração & dosagem , Carragenina/toxicidade , Modelos Animais de Doenças , Expressão Gênica/genética , Membro Posterior/enzimologia , Membro Posterior/metabolismo , Membro Posterior/cirurgia , Inflamação/induzido quimicamente , Inflamação/genética , Masculino , Medição da Dor/métodos , Dor Pós-Operatória/genética , Dor Pós-Operatória/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Medula Espinal/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA