Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803070

RESUMO

Cardiovascular disease (CVD) risk shows a clear sexual dimorphism with age, with a lower incidence in young women compared to age-matched men. However, this protection is lost after menopause. We demonstrate that sex-biased sensitivity to the development of CVD with age runs in parallel with changes in G protein-coupled receptor kinase 2 (GRK2) protein levels in the murine heart and that mitochondrial fusion markers, related to mitochondrial functionality and cardiac health, inversely correlate with GRK2. Young female mice display lower amounts of cardiac GRK2 protein compared to age-matched males, whereas GRK2 is upregulated with age specifically in female hearts. Such an increase in GRK2 seems to be specific to the cardiac muscle since a different pattern is found in the skeletal muscles of aging females. Changes in the cardiac GRK2 protein do not seem to rely on transcriptional modulation since adrbk1 mRNA does not change with age and no differences are found between sexes. Global changes in proteasomal or autophagic machinery (known regulators of GRK2 dosage) do not seem to correlate with the observed GRK2 dynamics. Interestingly, cardiac GRK2 upregulation in aging females is recapitulated by ovariectomy and can be partially reversed by estrogen supplementation, while this does not occur in the skeletal muscle. Our data indicate an unforeseen role for ovarian hormones in the regulation of GRK2 protein levels in the cardiac muscle which correlates with the sex-dependent dynamics of CVD risk, and might have interesting therapeutic applications, particularly for post-menopausal women.


Assuntos
Envelhecimento/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Caracteres Sexuais , Animais , Autofagia/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo
2.
Antioxid Redox Signal ; 35(9): 753-774, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736456

RESUMO

Significance: Nonalcoholic fatty liver disease (NAFLD) is a hepatic and systemic disorder with a complex multifactorial pathogenesis. Owing to the rising incidence of obesity and diabetes mellitus, the prevalence of NAFLD and its impact on global health care are expected to increase in the future. Differences in NAFLD exist between males and females, and among females depending on their reproductive status. Clinical and preclinical data show that females in the fertile age are more protected against NAFLD, and studies in postmenopausal women and ovariectomized animal models support a protective role for estrogens. Recent Advances: An efficient crosstalk between the liver and adipose tissue is necessary to regulate lipid and glucose metabolism, protecting the liver from steatosis and insulin resistance contributing to NALFD. New advances in the knowledge of sexual dimorphism in liver and adipose tissue are providing interesting clues about the sex differences in NAFLD pathogenesis that could inspire new therapeutic strategies. Critical Issues: Sex hormones influence key master regulators of lipid metabolism and oxidative stress in liver and adipose tissue. All these sex-biased metabolic adjustments shape the crosstalk between liver and adipose tissue, contributing to the higher protection of females to NAFLD. Future Directions: The development of novel drugs based on the protective action of estrogens, but without its feminizing or undesired side effects, might provide new therapeutic strategies for the management of NAFLD. Antioxid. Redox Signal. 35, 753-774.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Tecido Adiposo/metabolismo , Animais , Estrogênios/metabolismo , Feminino , Humanos , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Caracteres Sexuais
3.
Free Radic Biol Med ; 150: 148-160, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32105829

RESUMO

The prevalence and severity of nonalcoholic fatty liver disease (NAFLD) is higher in men and postmenopausal women compared to premenopausal women, suggesting a protective role for ovarian hormones. Diet-induced obesity and fatty acids surplus promote mitochondrial dysfunction in liver, triggering oxidative stress and activation of c-Jun N-terminal kinase (JNK) which has been related to the development of insulin resistance and steatosis, the main hallmarks of NAFLD. Considering that estrogen, in particular 17ß-estradiol (E2), have been reported to improve mitochondrial biogenesis and function in liver, our aim was to elucidate the role of E2 in preventing fatty acid-induced insulin resistance in hepatocytes through modulation of mitochondrial function, oxidative stress and JNK activation. An in vivo study was conducted in Wistar rats of both sexes (n = 7) fed control diet and high-fat diet (HFD), and in vitro studies were carried out in HepG2 cells treated with palmitate (PA) and E2 for 24 h. Our HFD-fed male rats showed a prediabetic state characterized by greater systemic and hepatic insulin resistance, as well as higher lipid content in liver, compared to females. JNK activation rose markedly in males in response to HFD feeding, in parallel with mitochondrial dysfunction and oxidative stress. Consistently, in PA-exposed HepG2 cells, E2 treatment prevented JNK activation, insulin resistance and fatty acid accumulation. Altogether, our data highlights the importance of E2 as a mitigating factor of fatty acid-insulin resistance in hepatocytes through downregulation of JNK activation, by means of mitochondrial function improvement.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar
4.
J Steroid Biochem Mol Biol ; 185: 256-267, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253224

RESUMO

Obesity is associated with inflammation, dysregulated adipokine secretion, and disrupted adipose tissue mitochondrial function. Estradiol (E2) has been previously reported to increase mitochondrial function and biogenesis in several cell lines, but neither the type of oestrogen receptor (ERα, ERß and GPER) involved nor the mechanism whereby such effects are exerted have been fully described. Considering the anti-inflammatory activity of E2 as well as its effects in enhancing mitochondrial biogenesis, the aim of this study was to investigate the contribution of ERα, ERß, and GPER signaling to the E2-mediated enhancement of adipocyte mitochondrial function in a pro-inflammatory situation. 3T3-L1 cells were treated for 24 h with ER agonists (PPT, DPN, and G1) and antagonists (MPP, PHTPP, and G15) in the presence or absence of interleukin 6 (IL6), as a pro-inflammatory stimulus. Inflammation, mitochondrial function and biogenesis markers were analyzed. To confirm the involvement of the PKA pathway, cells were treated with a GPER agonist, a PKA inhibitor, and IL6. Mitochondrial function markers were analyzed. Our results showed that activation of ERα and GPER, but not ERß, was able to counteract the proinflammatory effects of IL6 treatment, as well as mitochondrial biogenesis and function indicators. Inhibition of PKA prevented the E2- and G1-associated increase in mitochondrial function markers. In conclusion E2 prevents IL6 induced inflammation in adipocytes and promotes mitochondrial function through the combined activation of both GPER and ERα. These findings expand our understanding of ER interactions under inflammatory conditions in female rodent white adipose tissue.


Assuntos
Adipócitos/patologia , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Interleucina-6/metabolismo , Mitocôndrias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3 , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Feminino , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/agonistas
5.
J Endocrinol ; 232(2): 297-308, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27885055

RESUMO

Sexual dimorphism in mitochondrial biogenesis and function has been described in many rat tissues, with females showing larger and more functional mitochondria. The family of the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) plays a central role in the regulatory network governing mitochondrial biogenesis and function, but little is known about the different contribution of hepatic PGC1A and PGC1B in these processes. The aim of this study was to elucidate the role of 17ß-estradiol (E2) in mitochondrial biogenesis and function in liver and assess the contribution of both hepatic PGC1A and PGC1B as mediators of these effects. In ovariectomized (OVX) rats (half of which were treated with E2) estrogen deficiency led to impaired mitochondrial biogenesis and function, increased oxidative stress, and defective lipid metabolism, but was counteracted by E2 treatment. In HepG2 hepatocytes, the role of E2 in enhancing mitochondrial biogenesis and function was confirmed. These effects were unaffected by the knockdown of PGC1A, but were impaired when PGC1B expression was knocked down by specific siRNA. Our results reveal a widespread protective role of E2 in hepatocytes, which is explained by enhanced mitochondrial content and oxidative capacity, lower hepatic lipid accumulation, and a reduction of oxidative stress. We also suggest a novel hepatic protective role of PGC1B as a modulator of E2 effects on mitochondrial biogenesis and function supporting activation of PGC1B as a therapeutic target for hepatic mitochondrial disorders.


Assuntos
Estradiol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Feminino , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Camundongos Transgênicos , Coativadores de Receptor Nuclear/genética , Biogênese de Organelas , Ovariectomia , Oxirredução , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno , Ratos
6.
Biochem Cell Biol ; 94(2): 167-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26914441

RESUMO

Taking into account the sexual dimorphism previously found in white adipose tissue (WAT) regarding mitochondrial function and biogenesis, as well as insulin sensitivity, the aim of this study was to go further into the role of sex hormones in this dimorphism. To achieve this objective, we used ovariectomized rats and performed a screening by means of proteomic analyses of the periovarian WAT, combined with a study of the protein levels of specific factors involved in mitochondrial function. Rats were ovariectomized at 5 weeks of age and subcutaneously injected every 48 h with corn-oil (OVX group) or with 17ß-estradiol (E2, 10 µg/kg body mass; OVX + E2 group) for 4 weeks prior to sacrifice. Beside proteomic analysis, protein levels of Transcription Factor A, Mitochondrial (TFAM), cytochrome oxidase (COX)II, and COXIV were determined by Western blot, and mRNA levels of peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, ERα, ERß, lipoprotein lipase (LPL), peroxisome proliferator-activated receptor-γ (PPARγ), and adiponectin were quantified by real-time PCR. Our results show that ovariectomy leads to an increase in anabolic processes and inflammatory protein levels as well as to a decrease in some of the markers of mitochondrial function, which are restored, at least in part, by E2 supplementation. Indeed, this E2 supplementation seems to be counteracted by a decline in ERα and in the ERα to ERß ratio values that could be directed to avoid an over-stimulation of the E2 signaling pathway, given the possibility of an activation of extra-gonadal steroid biosynthetic pathways.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Estradiol/farmacologia , Ovariectomia , Proteômica , Animais , Complexo IV da Cadeia de Transporte de Elétrons/análise , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Estradiol/administração & dosagem , Feminino , Injeções Subcutâneas , Ratos , Ratos Wistar , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo
7.
Mol Cell Endocrinol ; 420: 116-24, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26628039

RESUMO

Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17ß-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation.


Assuntos
Estradiol/farmacologia , Mitocôndrias Cardíacas/metabolismo , Biogênese de Organelas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Estradiol/sangue , Feminino , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , Progesterona/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de Estrogênio/metabolismo
8.
Biochimie ; 106: 75-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128631

RESUMO

The aim of this study was to investigate the time-course response of retroperitoneal white adipose tissue (WAT) insulin and adiponectin signaling pathway intermediates in relation to the systemic age-associated impairment of insulin sensitivity in male and female rats. The main markers of the insulin and adiponectin signaling pathways of the retroperitoneal WAT, as well as of the systemic insulin sensitivity profile of 3-, 9- and 18-month old Wistar rats of both sexes were determined. Our results indicate that age leads to a decrease in the insulin sensitivity in both sexes that agrees with the decline in the levels of the WAT insulin signaling pathway intermediates, the increase in the adiposity index and the rise in the serum insulin resistance markers. This is accompanied by a sex-dimorphism that involves a gradual insulin signaling pathway decrease in female rats and an earlier and acute decrease in males and suggests a better insulin responsiveness in female rats at any age group. Our results confirm the idea that in rats, the insulin signaling pathway of WAT is altered at earlier ages than that of skeletal muscle and also provides further evidence of the impairment of the WAT adiponectin signaling pathway.


Assuntos
Tecido Adiposo Branco/metabolismo , Envelhecimento/metabolismo , Resistência à Insulina , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Tecido Adiposo Branco/crescimento & desenvolvimento , Fatores Etários , Animais , Glicemia/metabolismo , Western Blotting , Peso Corporal , Feminino , Insulina/sangue , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Tamanho do Órgão , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Receptor de Insulina/metabolismo , Receptores de Adiponectina/metabolismo , Fatores Sexuais , Fatores de Tempo
9.
J Endocrinol ; 221(3): 391-403, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24681828

RESUMO

Sexual dimorphism has been found in mitochondrial features of skeletal muscle, with female rats showing greater mitochondrial mass and function compared with males. Adiponectin is an insulin-sensitizing adipokine whose expression has been related to mitochondrial function and that is also expressed in skeletal muscle, where it exerts local metabolic effects. The aim of this research was to elucidate the role of sex hormones in modulation of mitochondrial function, as well as its relationship with adiponectin production in rat skeletal muscle. An in vivo study with ovariectomized Wistar rats receiving or not receiving 17ß-estradiol (E2) (10 µg/kg per 48 h for 4 weeks) was carried out, in parallel with an assay of cultured myotubes (L6E9) treated with E2 (10 nM), progesterone (Pg; 1 µM), or testosterone (1 µM). E2 upregulated the markers of mitochondrial biogenesis and dynamics, and also of mitochondrial function in skeletal muscle and L6E9. Although in vivo E2 supplementation only partially restored the decreased adiponectin expression levels induced by ovariectomy, these were enhanced by E2 and Pg treatment in cultured myotubes, whereas testosterone showed no effects. Adiponectin receptor 1 expression was increased by E2 treatment, both in vivo and in vitro, but testosterone decreased it. In conclusion, our results are in agreement with the sexual dimorphism previously reported in skeletal muscle mitochondrial function and indicate E2 to be its main effector, as it enhances mitochondrial function and diminishes oxidative stress. Moreover, our data support the idea of the existence of a link between mitochondrial function and adiponectin expression in skeletal muscle, which could be modulated by sex hormones.


Assuntos
Adiponectina/metabolismo , Estradiol/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adiponectina/sangue , Adiponectina/genética , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Estradiol/sangue , Estrogênios/farmacologia , Ácidos Graxos não Esterificados/sangue , Feminino , Masculino , Microscopia Confocal , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Ovariectomia , Oxirredução/efeitos dos fármacos , Progesterona/sangue , Progesterona/farmacologia , Ratos , Ratos Wistar , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testosterona/farmacologia
10.
J Mol Endocrinol ; 52(2): 203-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24604890

RESUMO

Sexual dimorphism has been found in both mitochondrial functionality and adiponectin expression in white adipose tissue, with female rats presenting more functional mitochondria than males and greater adiponectin expression. However, little is known about the role of sex hormones in this dimorphism. The aim was to elucidate the role of sex hormones in mitochondrial biogenesis and dynamics and in adiponectin synthesis in white adipocytes, and also to provide new evidence of the link between these processes. 3T3-L1 preadipocytes were differentiated and treated either with 17-ß estradiol (E2; 10  nM), progesterone (Pg), testosterone (1  µM both), or a combination of Pg or testosterone with flutamide (FLT; 10  µM) or E2 (1  µM). The markers of mitochondrial biogenesis and dynamics and adiponectin expression were analyzed. E2 induced mitochondrial proliferation and differentiation in 3T3-L1, although testosterone showed opposite effects. Pg treatment stimulated proliferation but impaired differentiation. In concerns mitochondrial dynamics, these hormones promoted fusion over fission. FLT treatment indicated that Pg elicits its effects on mitochondrial dynamics through the androgen receptor. E2 coadministration with testosterone or Pg reversed its effects. In conclusion, our results show that E2 induces stimulation of mitochondrial biogenesis in white adipocytes in vitro, especially in situations that imply an impairment of mitochondrial function, whereas testosterone would have opposite effects. Moreover, testosterone and Pg alter mitochondrial dynamics by promoting fusion over fission, while E2 stimulates both processes. All these alterations run in parallel with changes in adiponectin expression, thus suggesting the existence of a link between mitochondrial biogenesis and dynamics and adiponectin synthesis in white adipocytes.


Assuntos
Adipócitos Brancos/metabolismo , Adiponectina/biossíntese , Estradiol/farmacologia , Renovação Mitocondrial/efeitos dos fármacos , Testosterona/farmacologia , Células 3T3-L1 , Adipócitos Brancos/efeitos dos fármacos , Adiponectina/genética , Animais , Biomarcadores/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Flutamida/farmacologia , Masculino , Camundongos , Dinâmica Mitocondrial/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo
11.
Steroids ; 77(6): 659-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22402114

RESUMO

Sexual dimorphism has been previously found both in mitochondrial biogenesis and function and in adiponectin expression of retroperitoneal WAT. However, little is known about the E2 effects on WAT mitochondrial function. Accordingly, the aim of this study was to examine in greater depth the role of estrogens in sexual dimorphism. This was accomplished by studying the effects of ovariectomy and E2 replacement on retroperitoneal WAT mitochondrial function. Fourteen-week-old female and ovariectomized (OVX) female Wistar rats were used in this study. The ovariectomy was performed at 5 weeks of age and at 10 weeks of age OVX rats were divided into two experimental groups: OVX, and OVX treated with 17ß-estradiol (E2) (OVX+E2). Subcutaneous injections of E2 (10 µg/kg/48 h) were administered to the OVX+E2 rats for 4 weeks previous to the sacrifice whereas OVX rats were treated only with the vehicle. Levels of the main markers for mitochondrial biogenesis and function and those representatives of the antioxidant defense system and insulin sensitivity were determined. Additionally, the mRNA levels of the α and ß estrogen receptors and of some adipocyte differentiation markers were studied. Our results indicate that retroperitoneal WAT was able to adapt itself to ovariectomy without any changes in mitochondrial function markers or for the adiponectin levels. However, E2 supplementation led to an unexpected decrease in: TFAM protein levels, in LPL, PPARγ and adiponectin gene expression and in the systemic HMW adiponectin levels. This decrease is probably due to the down-regulation of the ERα mRNA expression to avoid an over-stimulation by E2.


Assuntos
Adiponectina/genética , Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/metabolismo , Mitocôndrias/efeitos dos fármacos , Ovariectomia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Estradiol/sangue , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Homeostase/efeitos dos fármacos , Terapia de Reposição Hormonal , Resistência à Insulina , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/enzimologia , Lipase Lipoproteica/genética , Mitocôndrias/metabolismo , PPAR gama/genética , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Caracteres Sexuais
12.
Steroids ; 76(10-11): 1051-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21540046

RESUMO

Taking into account the sexual dimorphism previously reported regarding mitochondrial function and biogenesis in brown adipose tissue, the aim of the present study was to go further into these differences by investigating the effect of ovariectomy and 17-ß estradiol (E2) replacement on brown adipose tissue mitochondrial function. In this study, fourteen-week-old control female and ovariectomized female Wistar rats were used. Rats were ovariectomized at 5 weeks of age and were treated every 2 days with placebo (OVX group) or E2 (10 µg/kg) (OVX+E2 group) for 4 weeks before sacrifice. We studied the levels of oxidative capacity, antioxidant defence and oxidative damage markers in brown adipose tissue. Moreover, the levels of key elements of mitochondrial biogenesis as well as UCP1 protein levels, as an index of mitochondrial thermogenic capacity, were also determined. In response to ovariectomy, mitochondrial proliferation increased, resulting in less functional mitochondria, since oxidative capacity and antioxidant defences decreased. Although E2 supplementation was able to restore the serum levels of E2 shown by control rats, the treatment reverted the effects of the ovariectomy only in part, and oxidative and antioxidant capacities in OVX+E2 rats did not reach the levels shown by control females. Taking these results into account, we suggest that ovarian hormones are responsible, at least in part, for the sexual dimorphism in BAT mitochondrial function. However, other signals produced by ovary, rather than E2, would play an important role in the control of mitochondrial function in BAT.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Estradiol/farmacologia , Mitocôndrias/metabolismo , Ovariectomia/efeitos adversos , Animais , Western Blotting , Peso Corporal , Estradiol/sangue , Feminino , Reação em Cadeia da Polimerase , Ratos
13.
Cell Physiol Biochem ; 17(3-4): 173-80, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16543734

RESUMO

The present study was performed to analyze in detail gender- and site-related alterations in the adrenergic signal transduction pathway of lipolysis in fat cells isolated from subcutaneous abdominal and visceral fat depots from severely obese patients. The study group consisted of 30 morbidly obese subjects (9 men and 21 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m2, who had undergone abdominal surgery. Protein levels of hormone-sensitive lipase (HSL) and adrenergic receptors (AR), as well as HSL activity and the lipolytic response to adrenergic agents were analyzed. Both fat depots had similar basal lipolysis, but the capacity of catecholamines to activate lipolysis was greater in visceral fat, both at AR and postreceptor levels. Basal lipolysis and lipolytic activity induced by dibutyryl cyclic AMP were higher in men than in women. However, the visceral depot of women showed a higher maximal stimulation by noradrenaline than that of men, in accordance with higher beta1- and beta3-AR protein levels. In conclusion, the main gender-related differences were located in the visceral depot, with women exhibiting a higher sensitivity to catecholamines associated with an increased provision of beta-AR, while men showed an enhanced lipolytic capacity at the postreceptor level.


Assuntos
Gordura Abdominal/metabolismo , Tecido Adiposo/metabolismo , Gordura Intra-Abdominal/metabolismo , Lipólise , Obesidade Mórbida/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/patologia , Adulto , Western Blotting , Índice de Massa Corporal , Bucladesina/farmacologia , Colforsina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Norepinefrina/farmacologia , Receptores Adrenérgicos alfa/análise , Receptores Adrenérgicos beta/análise , Fatores Sexuais , Esterol Esterase/sangue
14.
Cell Tissue Res ; 323(3): 505-11, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16328496

RESUMO

Changes in rat mammary fat pad during pregnancy were assessed by studying differences in the morphology and composition of the pad and in the levels of proteins involved in the accumulation and mobilization of fat stores. During pregnancy, the mammary fat pad weight had increased 1.8-fold by day 20, as compared with control rats. DNA content had increased two-fold by day 13 and remained stable until day 20. Protein content showed a two-fold increase on day 20, compared with control rats. As pregnancy advanced, both the percentage of mammary gland cells with respect to the whole mammary fat pad and the size of the adipocytes increased. The specific content of the different elements of the lipolytic pathway, viz. (alpha(2A)-adrenergic receptor (AR), beta(3)-AR, cAMP-dependent protein kinase and hormone-sensitive lipase (HSL)) underwent a decrease as pregnancy progressed, although adenylate cyclase increased greatly. The lipoprotein lipase (LPL) content per gram of tissue increased with pregnancy and the HSL-to-LPL ratio reflected a continuous increase in the triglyceride storage throughout pregnancy. Thus, the mammary fat pad undergoes extensive morphological, compositional and metabolic transformation during pregnancy, attributable to the development of the mammary gland. The various elements of the lipolytic pathway and LPL undergo major changes during the development of the mammary gland focused towards the increase of fat stores and allowing the accumulation of lipid droplets in the epithelial mammary cells and an increase in adipocyte size.


Assuntos
Adipócitos/fisiologia , Tecido Adiposo/fisiologia , Lipólise/fisiologia , Glândulas Mamárias Animais/fisiologia , Prenhez/fisiologia , Adenilil Ciclases/metabolismo , Adipócitos/enzimologia , Tecido Adiposo/enzimologia , Animais , Peso Corporal , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Lipase Lipoproteica/metabolismo , Glândulas Mamárias Animais/enzimologia , Gravidez , Ratos , Ratos Wistar , Receptores Adrenérgicos/metabolismo , Esterol Esterase/metabolismo
15.
J Nutr Biochem ; 17(3): 197-203, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16214326

RESUMO

Paraoxonase 1 (PON1) associates to specific high-density lipoproteins (HDLs)--those containing apolipoprotein A-I (apoA-I) and apolipoprotein J (apoJ)--and is largely responsible for their antiatherogenic properties. Caloric restriction (CR) has been shown to reduce major atherosclerotic risk factors. The aims of this work were to study PON1 activity response to CR (40% over 14 weeks) and to elucidate whether there are adaptive differences related to gender. Serum and liver paraoxonase and arylesterase activities, serum triglyceride, total and HDL cholesterol concentrations, serum PON1, apoA-I and apoJ contents and liver PON1 mRNA levels were measured. No effects of CR or gender were observed in triglyceride, total cholesterol concentration and PON1 mRNA levels. HDL cholesterol was higher in female rats than in male rats and increased with CR only in the latter animals. Serum PON1 activities tended to be higher in female rats and dropped with CR, with females showing the biggest decrease. Serum PON1 content was higher in female rats and decreased in both genders with CR, whereas apoA-I and apoJ contents, which were higher in female rats too, decreased only in the former animals, accounting for the high PON1 activity decrease observed in these animals. In conclusion, the short-term CR-associated reduction of serum PON1 activity and PON1, apoA-I and apoJ levels points toward a reduced stability of HDL-PON1 complexes and/or HDL particle levels responsible for PON1 transport and function in the blood. Moreover, the variations in PON1 activity and apolipoprotein levels show gender-related differences that are indicative of a different adaptive strategy of male and female rats when faced with a period of food restriction.


Assuntos
Arildialquilfosfatase/sangue , Restrição Calórica , Caracteres Sexuais , Animais , Apolipoproteína A-I/sangue , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Clusterina/sangue , Feminino , Privação de Alimentos , Lipídeos/sangue , Fígado/anatomia & histologia , Fígado/enzimologia , Masculino , Microssomos Hepáticos/química , Tamanho do Órgão , Proteínas/análise , RNA Mensageiro/análise , Ratos
16.
J Nutr Biochem ; 16(5): 279-85, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866227

RESUMO

The development of metabolic complications of obesity has been associated with the existence of depot-specific differences in the biochemical properties of adipocytes. The aim of this study was to investigate, in severely obese men and women, both gender- and depot-related differences in lipoprotein lipase (LPL) expression and activity, as well as the involvement of endocrine and biometric factors and their dependence on gender and/or fat depot. Morbidly obese, nondiabetic, subjects (9 men and 22 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m(2) who had undergone abdominal surgery were studied. Both expression and activity of LPL and leptin expression were determined in adipose samples from subcutaneous and visceral fat depots. In both men and women, visceral fat showed higher LPL mRNA levels as well as lower ob mRNA levels and tissue leptin content than the subcutaneous one. In both subcutaneous and visceral adipose depots, women exhibited higher protein content, decreased fat cell size and lower LPL activity than men. The gender-related differences found in abdominal fat LPL activity could contribute to the increased risk for developing obesity-associated diseases shown by men, even in morbid obesity, in which the massive fat accumulation could mask these differences. Furthermore, the leptin content of fat depots as well as plasma insulin concentrations appear in our population as the main determinants of adipose tissue LPL activity, adjusted by gender, depot and BMI.


Assuntos
Tecido Adiposo/metabolismo , Insulina/sangue , Leptina/metabolismo , Lipase Lipoproteica/metabolismo , Obesidade Mórbida/metabolismo , Tecido Adiposo/patologia , Adulto , Feminino , Expressão Gênica , Humanos , Masculino , RNA Mensageiro/metabolismo , Análise de Regressão , Fatores Sexuais
17.
J Nutr Biochem ; 14(3): 133-8, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12742540

RESUMO

The description of different plasma amino acid profiles for specific types of cancer suggests that the metabolic alterations brought about by each type of tumor determine their own, distinctive profile of plasma amino acids. However, the blood cell pool represents an important percentage of the total amount of amino acids and has been reported to undergo significant changes in several physiological situations, thus raising the question of what effect a situation like cancer could have on amino acid blood compartmentation. We determined the levels of individual amino acids in blood, plasma and blood cell compartment of 14 lung cancer patients, 16 breast cancer patients and the corresponding healthy controls (n = 14 and 18, respectively). Cancer, a situation of increased amino acid demand, was accompanied by a decrease in the amino acid availability, of which the blood cell pool would be the main contributor. Thus, the fact that the blood cell pool reflects more intensely than plasma the changes in amino acid availability and undergoes changes according to the demand of amino acids, reinforces the important role of the cell pool in blood amino acid compartmentation and handling. The profiles of blood amino acids characteristic of different types of tumors that have been proposed by some authors could be extended to other compartments-in addition to the plasma-and even be more informative.


Assuntos
Aminoácidos/sangue , Células Sanguíneas/química , Neoplasias da Mama/sangue , Neoplasias Pulmonares/sangue , Adulto , Idoso , Aminoácidos Essenciais/sangue , Asparagina/sangue , Feminino , Ácido Glutâmico/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Ornitina/sangue , Plasma/química , Prolina/sangue , Valina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA