Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7475, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156785

RESUMO

The essential oils from the Centaurea genus are well known for their pharmacological properties. The most abundant and dominant chemical components in Centaurea essential oils are ß-caryophyllene, hexadecanoic acid, spathulenol, pentacosane, caryophyllene oxide, and phytol. However, whether these dominant components are the key drivers for observed antimicrobial activity remains unclear. Thus, the aim of this study was dual. Here we provide comprehensive, literature-based data to correlate the chemical compounds in Centaurea essential oils with the tested antimicrobial activity. Secondly, we characterized the essential oil of Centaurea triumfettii All. squarrose knapweed using coupled system gas chromatography-mass spectrometry and tested its phytochemicals for antimicrobial activity against E. coli and S. epidermis using disc diffusion assay and monitoring their growth in Muller Hinton broth. The most abundant compounds in C. triumfettii essential oil were hexadecanoic acid (11.1%), spathulenol (10.8%), longifolene (8.8%), germacrene D (8.4%), aromadendrene oxide (6.0%) and linoleic acid (5.3%). Based on our analysis of literature data from other Centaurea essential oils, they were positively correlated with antimicrobial activity. Using an agar disk diffusion method, tested chemical constituents did not show experimental evidence to support this positive correlation to antimicrobial activity when we tested them as pure components. The antibacterial effect of essential oil constituents may be related to a complex synergistic, rather than a single component as suggested by performed network pharmacology analysis, underlying the theoretical interactions between the essential oil phytochemicals listed as potentially responsible for antimicrobial activity and should be confirmed in further in-depth studies. This is the first report on the comparative analysis of Centaurea essential oils with good antimicrobial activity, as well as the first analysis of chemical components of the essential oil from C. triumfettii and the first report of antimicrobial activity of the representative, pure components: aromadendrene, germacrene D, spathulenol, longifolene, and the mixture of selected chemical compounds. This work contributes to the body of knowledge on the genus Centaurea and C. triumfettii species.


Assuntos
Centaurea , Óleos Voláteis , Óleos Voláteis/química , Centaurea/química , Escherichia coli , Ácido Palmítico , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
2.
Sci Rep ; 13(1): 2692, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792672

RESUMO

The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae. It consists of the AcrB transporter, which is embedded in the inner membrane, the AcrA adapter located in the periplasm, and the channel protein TolC responsible for the transport of substrates towards the extracellular environment. Besides conferring resistance to many classes of antibiotics, AcrAB plays a role in the pathogenesis and virulence of several bacterial pathogens. Here we report that the AcrAB pump heavily affects the infection process of the LF82 strain, the prototype of Adherent-Invasive Escherichia coli (AIEC) which are highly abundant in the ileal mucosa of Chron disease patients. We found that the deletion of genes encoding AcrA and/or AcrB leads to decreased survival of LF82 within macrophages. Ectopic AcrAB expression in a acrAB defective mutant restores the wild type condition. Furthermore, we demonstrate that inhibition of AcrB and replacement of the transporter with an unfunctional AcrB also interfere with bacterial viability inside macrophages. Overall, these data suggest a pivotal role of the AcrAB efflux pump in bacteria-host cell interactions also in AIEC.


Assuntos
Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Macrófagos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
3.
Sci Rep ; 9(1): 2906, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814604

RESUMO

Efflux pumps are membrane protein complexes conserved in all living organisms. Beyond being involved in antibiotic extrusion in several bacteria, efflux pumps are emerging as relevant players in pathogen-host interactions. We have investigated on the possible role of the efflux pump network in Shigella flexneri, the etiological agent of bacillary dysentery. We have found that S. flexneri has retained 14 of the 20 pumps characterized in Escherichia coli and that their expression is differentially modulated during the intracellular life of Shigella. In particular, the emrKY operon, encoding an efflux pump of the Major Facilitator Superfamily, is specifically and highly induced in Shigella-infected U937 macrophage-like cells and is activated in response to a combination of high K+ and acidic pH, which are sensed by the EvgS/EvgA two-component system. Notably, we show that following S. flexneri infection, macrophage cytosol undergoes a mild reduction of intracellular pH, permitting EvgA to trigger the emrKY activation. Finally, we present data suggesting that EmrKY is required for the survival of Shigella in the harsh macrophage environment, highlighting for the first time the key role of an efflux pump during the Shigella invasive process.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Disenteria Bacilar/microbiologia , Macrófagos/fisiologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Shigella flexneri/fisiologia , Proteínas de Bactérias/genética , Proteínas de Ligação ao Cálcio/genética , Sobrevivência Celular , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular , Macrófagos/microbiologia , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Periplásmicas de Ligação/genética , Potássio/metabolismo , Shigella flexneri/patogenicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células U937 , Virulência
4.
PLoS One ; 9(2): e90230, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587292

RESUMO

Proper protein localization is critical for bacterial virulence. PhoN2 is a virulence-associated ATP-diphosphohydrolase (apyrase) involved in IcsA-mediated actin-based motility of S. flexneri. Herein, by analyzing a ΔphoN2 mutant of the S. flexneri strain M90T and by generating phoN2::HA fusions, we show that PhoN2, is a periplasmic protein that strictly localizes at the bacterial poles, with a strong preference for the old pole, the pole where IcsA is exposed, and that it is required for proper IcsA exposition. PhoN2-HA was found to be polarly localized both when phoN2::HA was ectopically expressed in a Escherichia coli K-12 strain and in a S. flexneri virulence plasmid-cured mutant, indicating a conserved mechanism of PhoN2 polar delivery across species and that neither IcsA nor the expression of other virulence-plasmid encoded genes are involved in this process. To assess whether PhoN2 and IcsA may interact, two-hybrid and cross-linking experiments were performed. While no evidence was found of a PhoN2-IcsA interaction, unexpectedly the outer membrane protein A (OmpA) was shown to bind PhoN2-HA through its periplasmic-exposed C-terminal domain. Therefore, to identify PhoN2 domains involved in its periplasmic polar delivery as well as in the interaction with OmpA, a deletion and a set of specific amino acid substitutions were generated. Analysis of these mutants indicated that neither the (183)PAPAP(187) motif of OmpA, nor the N-terminal polyproline (43)PPPP(46) motif and the Y155 residue of PhoN2 are involved in this interaction while P45, P46 and Y155 residues were found to be critical for the correct folding and stability of the protein. The relative rapid degradation of these amino acid-substituted recombinant proteins was found to be due to unknown S. flexneri-specific protease(s). A model depicting how the PhoN2-OmpA interaction may contribute to proper polar IcsA exposition in S. flexneri is presented.


Assuntos
Apirase/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Shigella flexneri/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Apirase/química , Apirase/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Periplasma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shigella flexneri/genética , Shigella flexneri/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Oncotarget ; 4(12): 2271-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24345856

RESUMO

LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Neoplasias/genética , DNA Polimerase Dirigida por RNA/genética , Diferenciação Celular/genética , Processos de Crescimento Celular/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Humanos , Melanoma/enzimologia , Melanoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/enzimologia , RNA Neoplásico/genética , DNA Polimerase Dirigida por RNA/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
6.
Int J Med Microbiol ; 301(1): 34-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20952251

RESUMO

The genetic relatedness of 52 Stenotrophomonas maltophilia strains, collected from various environmental and clinical sources, including cystic fibrosis (CF) patients, as well as the presence and the expression of some virulence-associated genes were studied. Pulsed-field gel electrophoresis (PFGE) analysis identified 47 profiles and three clusters of isolates with an identical PFGE pattern considered to be indistinguishable strains. Restriction fragment length polymorphism of the gyrB gene grouped the 52 strains into nine different profiles. Most CF clinical isolates (29 out of 41) showed profile 1, while the analysis of the hypervariable regions of the 16S rRNA gene revealed five distinct allelic variations, with the majority of CF isolates (23 out of 41) belonging to sequence group 1. Furthermore, the strains were characterized for motility and expression of virulence-associated genes, including genes encoding type-1 fimbriae, proteases (StmPr1 and StmPr2) and esterase. All S. maltophilia strains exhibited a very broad range of swimming and twitching motility, while none showed swarming motility. A complete smf-1 gene was PCR-amplified only from clinically derived S. maltophilia strains. Finally, the virulence of representative S. maltophilia strains impaired in the expression of proteases and esterase activities was evaluated by infecting larvae of the wax moth Galleria mellonella. The results obtained strongly indicate that the major extracellular protease StmPr1 may be a relevant virulence factor of S. maltophilia.


Assuntos
Fibrose Cística/complicações , Infecções por Bactérias Gram-Negativas/microbiologia , Stenotrophomonas maltophilia/isolamento & purificação , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Campo Pulsado , Expressão Gênica , Humanos , Locomoção , Dados de Sequência Molecular , Tipagem Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/fisiologia , Fatores de Virulência/genética
7.
Int J Med Microbiol ; 301(4): 273-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21112247

RESUMO

Stenotrophomonas maltophilia is a microorganism of environmental and clinical importance as well as a frequent airway colonizer of cystic fibrosis (CF) individuals. We combined 2-DE and MALDI-TOF MS to profile the protein expression in S. maltophilia K279a, a completely sequenced clinical isolate, grown at 37 °C with respect to the strain grown at 26 °C. Among the proteins up-regulated at 37 °C, we identified GroEL, a molecular chaperone that mainly assist the folding and unfolding of proteins under both normal and stress conditions. A 2.4-kb groESL mRNA was detected independently by Northern blot analyses with a groES- and a groEL-specific probe, indicating that S. maltophilia groES and groEL form an operon. Primer extension analysis of S. maltophilia groESL done in Escherichia coli showed that 2 promoters, Pσ(32) and Pσ(70), were utilized under the heat-shock and normal condition, respectively, whereas S. maltophilia groEL was shown to act as a heat-shock gene at 37 °C, 42 °C, and, to a lesser extent, at 50 °C by real-time RT-PCR analyses. Finally, immunoblot analyses revealed that S. maltophilia GroEL strongly reacted with sera from CF patients chronically infected by the microorganism, but did not with sera from CF patients with sporadic infection or uninfected.


Assuntos
Proteínas de Bactérias/biossíntese , Chaperoninas/biossíntese , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Stenotrophomonas maltophilia/efeitos da radiação , Northern Blotting , Eletroforese em Gel Bidimensional , Escherichia coli/genética , Perfilação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA