RESUMO
Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin-mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin-associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N-terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME-deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony-sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations in VPS4 led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)-dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion of VPS4 from an end3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin-independent endocytosis pathway rescued 4Δ+ENTH vps4Δ cells. Loss of Vps4 from an otherwise wild-type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1-dependent recycling of internalized protein to the cell surface. Additionally, vps4Δ rcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT-dependent trafficking on endocytic recycling and the PM.
Assuntos
Clatrina/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases , Endocitose/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação Fúngica da Expressão Gênica , Transporte Proteico/genética , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
G-protein-coupled receptors (GPCRs) are integral membrane proteins that initiate responses to extracellular stimuli by mediating ligand-dependent activation of cognate heterotrimeric G proteins. In yeast, occupancy of GPCR Ste2 by peptide pheromone α-factor initiates signaling by releasing a stimulatory Gßγ complex (Ste4-Ste18) from its inhibitory Gα subunit (Gpa1). Prolonged pathway stimulation is detrimental, and feedback mechanisms have evolved that act at the receptor level to limit the duration of signaling and stimulate recovery from pheromone-induced G1 arrest, including upregulation of the expression of an α-factor-degrading protease (Bar1), a regulator of G-protein signaling protein (Sst2) that stimulates Gpa1-GTP hydrolysis, and Gpa1 itself. Ste2 is also downregulated by endocytosis, both constitutive and ligand induced. Ste2 internalization requires its phosphorylation and subsequent ubiquitinylation by membrane-localized protein kinases (Yck1 and Yck2) and a ubiquitin ligase (Rsp5). Here, we demonstrate that three different members of the α-arrestin family (Ldb19/Art1, Rod1/Art4, and Rog3/Art7) contribute to Ste2 desensitization and internalization, and they do so by discrete mechanisms. We provide genetic and biochemical evidence that Ldb19 and Rod1 recruit Rsp5 to Ste2 via PPXY motifs in their C-terminal regions; in contrast, the arrestin fold domain at the N terminus of Rog3 is sufficient to promote adaptation. Finally, we show that Rod1 function requires calcineurin-dependent dephosphorylation.