Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000131

RESUMO

Biofilm-associated microbes are 10-1000 times less susceptible to antibiotics. An emerging treatment strategy is to target the structural components of biofilm to weaken the extracellular matrix without introducing selective pressure. Biofilm-associated bacteria, including Escherichia coli and Staphylococcus aureus, generate amyloid fibrils to reinforce their extracellular matrix. Previously, de novo synthetic α-sheet peptides designed in silico were shown to inhibit amyloid formation in multiple bacterial species, leading to the destabilization of their biofilms. Here, we investigated the impact of inhibiting amyloid formation on antibiotic susceptibility. We hypothesized that combined administration of antibiotics and α-sheet peptides would destabilize biofilm formation and increase antibiotic susceptibility. Two α-sheet peptides, AP90 and AP401, with the same sequence but inverse chirality at every amino acid were tested: AP90 is L-amino acid dominant while AP401 is D-amino acid dominant. For E. coli, both peptides increased antibiotic susceptibility and decreased the biofilm colony forming units when administered with five different antibiotics, and AP401 caused a greater increase in all cases. For S. aureus, increased biofilm antibiotic susceptibility was also observed for both peptides, but AP90 outperformed AP401. A comparison of the peptide effects demonstrates how chirality influences biofilm targeting of gram-negative E. coli and gram-positive S. aureus. The observed increase in antibiotic susceptibility highlights the role amyloid fibrils play in the reduced susceptibility of bacterial biofilms to specific antibiotics. Thus, the co-administration of α-sheet peptides and existing antibiotics represents a promising strategy for the treatment of biofilm infections.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos/farmacologia , Peptídeos/química , Amiloide/química , Amiloide/metabolismo
2.
Protein Sci ; 33(2): e4854, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062941

RESUMO

Type 2 diabetes (T2D) results from insulin secretory dysfunction arising in part from the loss of pancreatic islet ß-cells. Several factors contribute to ß-cell loss, including islet amyloid formation, which is observed in over 90% of individuals with T2D. The amyloid is comprised of human islet amyloid polypeptide (hIAPP). Here we provide evidence that early in aggregation, hIAPP forms toxic oligomers prior to formation of amyloid fibrils. The toxic oligomers contain α-sheet secondary structure, a nonstandard secondary structure associated with toxic oligomers in other amyloid diseases. De novo, synthetic α-sheet compounds designed to be nontoxic and complementary to the α-sheet structure in the toxic oligomers inhibit hIAPP aggregation and neutralize oligomer-mediated cytotoxicity in cell-based assays. In vivo administration of an α-sheet design to mice for 4 weeks revealed no evidence of toxicity nor did it elicit an immune response. Furthermore, the α-sheet designs reduced endogenous islet amyloid formation and mitigation of amyloid-associated ß-cell loss in cultured islets isolated from an hIAPP transgenic mouse model of islet amyloidosis. Characterization of the involvement of α-sheet in early aggregation of hIAPP and oligomer toxicity contributes to elucidation of the molecular mechanisms underlying amyloid-associated ß-cell loss.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química , Peptídeos beta-Amiloides
3.
Sci Rep ; 13(1): 9272, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286572

RESUMO

Uropathogenic Escherichia coli account for the largest proportion of nosocomial infections in the United States. Nosocomial infections are a major source of increased costs and treatment complications. Many infections are biofilm associated, rendering antibiotic treatments ineffective or cause additional complications (e.g., microbiome depletion). This work presents a potentially complementary non-antibiotic strategy to fight nosocomial infections by inhibiting the formation of amyloid fibrils, a proteinaceous structural reinforcement known as curli in E. coli biofilms. Despite extensive characterization of the fibrils themselves and their associated secretion system, mechanistic details of curli assembly in vivo remain unclear. We hypothesized that, like other amyloid fibrils, curli polymerization involves a unique secondary structure termed "α-sheet". Biophysical studies herein confirmed the presence of α-sheet structure in prefibrillar species of CsgA, the major component of curli, as it aggregated. Binding of synthetic α-sheet peptides to the soluble α-sheet prefibrillar species inhibited CsgA aggregation in vitro and suppressed amyloid fibril formation in biofilms. Application of synthetic α-sheet peptides also enhanced antibiotic susceptibility and dispersed biofilm-resident bacteria for improved uptake by phagocytic cells. The ability of synthetic α-sheet peptides to reduce biofilm formation, improve antibiotic susceptibility, and enhance clearance by macrophages has broad implications for combating biofilm-associated infections.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Amiloide/metabolismo , Biofilmes , Peptídeos/química , Proteínas de Bactérias/metabolismo
4.
Open Biol ; 12(11): 220261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36416010

RESUMO

Amyloid diseases are linked to protein misfolding whereby the amyloidogenic protein undergoes a conformational change, aggregates and eventually forms amyloid fibrils. While the amyloid fibrils and plaques are hallmarks of these diseases, they typically form late in the disease process and do not correlate with disease. Instead, there is growing evidence that smaller, soluble toxic oligomers form prior and appear to be early triggers of the molecular pathology underlying these diseases. Nearly 20 years ago, we proposed the α-sheet hypothesis after discovering that the early conformational changes observed during atomistic molecular dynamics simulations involve the formation of a non-standard protein structure, α-sheet. Furthermore, we proposed that toxic oligomers contain α-sheet structure and that preferentially targeting this structure could neutralize the toxicity, prevent further aggregation and serve as the basis for early detection of disease. Here, we present the origin of the α-sheet hypothesis and describe α-sheet structure and the corresponding mechanisms of conversion. We discuss experimental studies demonstrating that both mammalian and bacterial amyloid systems form α-sheet oligomers before converting to conventional ß-sheet fibrils. Furthermore, we show that the process can be inhibited with de novo designed α-sheet peptides complementary to the structure in the toxic oligomers.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Animais , Amiloide/química , Conformação Proteica em Folha beta , Simulação de Dinâmica Molecular , Peptídeos/química , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA