Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1391425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258154

RESUMO

Pathogenic variants in the leucine zipper-like transcriptional regulator 1 gene (LZTR1) have been identified in schwannomatosis and Noonan syndrome. Here, we expand the phenotype spectrum of LZTR1 variants. We identified four loss-of-function heterozygous LZTR1 variants in five children with multiple café au lait macules and one adult with multiple café au lait macules and axillar freckling, by applying gene panel analysis in four families. The three LZTR1 variants, namely, c.184del/p.Glu62Serfs*39, c.1927C < T/p.Gln643*, and c.857_858delinsT/p.Gly286Valfs*65, were novel, whereas the variant c.1018C > T/ p.Arg340* had been previously reported in a patient with schwannomatosis. Similar to what is known from other LZTR1-associated conditions, penetrance of the skin manifestations was reduced in two carriers of the familial variants. Our study expands the LZTR1 phenotype to the presence of isolated café au lait macules with or without freckling. Thus, variants in the LZTR1 gene should be considered in patients with multiple café au lait macules.

2.
Hum Genet ; 143(6): 739-745, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38743093

RESUMO

Germline gain of function variants in the oncogene ABL1 cause congenital heart defects and skeletal malformations (CHDSKM) syndrome. Whether a corresponding ABL1 deficiency disorder exists in humans remains unknown although developmental defects in mice deficient for Abl1 support this notion. Here, we describe two multiplex consanguineous families, each segregating a different homozygous likely loss of function variant in ABL1. The associated phenotype is multiple congenital malformations and distinctive facial dysmorphism that are opposite in many ways to CHDSKM. We suggest that a tight balance of ABL1 activity is required during embryonic development and that both germline gain of function and loss of function variants result in distinctively different allelic congenital malformation disorders.


Assuntos
Cardiopatias Congênitas , Proteínas Proto-Oncogênicas c-abl , Humanos , Cardiopatias Congênitas/genética , Feminino , Masculino , Proteínas Proto-Oncogênicas c-abl/genética , Linhagem , Fenótipo , Síndrome , Anormalidades Múltiplas/genética , Mutação em Linhagem Germinativa
3.
Clin Genet ; 100(2): 187-200, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33955014

RESUMO

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.


Assuntos
Anormalidades Múltiplas/etiologia , Doenças do Desenvolvimento Ósseo/etiologia , Deficiência Intelectual/etiologia , Proteínas Repressoras/genética , Anormalidades Dentárias/etiologia , Anormalidades Múltiplas/genética , Adolescente , Doenças do Desenvolvimento Ósseo/genética , Criança , Pré-Escolar , Face/anormalidades , Fácies , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Anormalidades Dentárias/genética , Adulto Jovem
5.
Am J Hum Genet ; 95(6): 698-707, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434003

RESUMO

Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations.


Assuntos
Atresia das Cóanas/genética , Surdez/congênito , Deleção de Genes , Cardiopatias Congênitas/genética , Regiões Promotoras Genéticas/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Spliceossomos/genética , Alelos , Pré-Escolar , Atresia das Cóanas/diagnóstico , Surdez/diagnóstico , Surdez/genética , Exossomos/genética , Fácies , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Genes Reporter , Cardiopatias Congênitas/diagnóstico , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Análise de Sequência de DNA , Spliceossomos/metabolismo
6.
Hum Genet ; 130(6): 715-24, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21607748

RESUMO

Kabuki syndrome (KS) is one of the classical, clinically well-known multiple anomalies/mental retardation syndromes, mainly characterized by a very distinctive facial appearance in combination with additional clinical signs such as developmental delay, short stature, persistent fingerpads, and urogenital tract anomalies. In our study, we sequenced all 54 coding exons of the recently identified MLL2 gene in 34 patients with Kabuki syndrome. We identified 18 distinct mutations in 19 patients, 11 of 12 tested de novo. Mutations were located all over the gene and included three nonsense mutations, two splice-site mutations, six small deletions or insertions, and seven missense mutations. We compared frequencies of clinical symptoms in MLL2 mutation carriers versus non-carriers. MLL2 mutation carriers significantly more often presented with short stature and renal anomalies (p = 0.026 and 0.031, respectively), and in addition, MLL2 carriers obviously showed more frequently a typical facial gestalt (17/19) compared with non-carriers (9/15), although this result was not statistically significant (p = 0.1). Mutation-negative patients were subsequently tested for mutations in ten functional candidate genes (e.g. MLL, ASC2, ASH2L, and WDR5), but no convincing causative mutations could be found. Our results indicate that MLL2 is the major gene for Kabuki syndrome with a wide spectrum of de novo mutations and strongly suggest further genetic heterogeneity.


Assuntos
Anormalidades Múltiplas/genética , Doenças Hematológicas/genética , Mutação , Doenças Vestibulares/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Éxons , Face/anormalidades , Feminino , Heterogeneidade Genética , Heterozigoto , Humanos , Masculino , Proteínas de Neoplasias/genética , Fenótipo , Análise de Sequência de DNA
7.
Eur J Hum Genet ; 13(7): 883-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15856072

RESUMO

While growth retardation and short stature are well-known features of patients with classical neurofibromatosis type 1 (NF1), we found advanced height growth and accelerated carpal bone age in patients with an NF1 microdeletion. Our analysis is based on growth data of 21 patients with common 1.4/1.2 Mb microdeletions, including three patients with a Weaver-like appearance. Overgrowth was most evident in preschool children (2-6 years, n=10, P=0.02). We conclude that childhood overgrowth is part of the phenotypic spectrum in patients with the common 1.4/1.2 Mb NF1 microdeletions and assume that the chromosomal region comprised by the microdeletions contains a gene whose haploinsufficiency causes overgrowth.


Assuntos
Estatura/genética , Desenvolvimento Infantil , Neurofibromatose 1/genética , Neurofibromina 1/genética , Deleção de Sequência , Adolescente , Adulto , Criança , Pré-Escolar , Face/anormalidades , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurofibromatose 1/etiologia , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA