Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011908, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198498

RESUMO

Macroecological approaches can provide valuable insight into the epidemiology of globally distributed, multi-host pathogens. Toxoplasma gondii is a protozoan that infects any warm-blooded animal, including humans, in almost every habitat worldwide. Toxoplasma gondii infects its hosts through oocysts in the environment, carnivory of tissue cysts within intermediate host prey and vertical transmission. These routes of infection enable specific predictions regarding the ecological and life history traits that should predispose specific taxa to higher exposure and, thus infection rates of T. gondii. Using T. gondii prevalence data compiled from 485 studies representing 533 free-ranging wild mammalian species, we examined how ecological (habitat type, trophic level) and life history (longevity, vagility, gestation duration and torpor) traits influence T. gondii infection globally. We also compared T. gondii prevalence between wild and domesticated species from the same taxonomic families using data compiled from 540 studies of domestic cattle, sheep, and pigs. Across free-ranging wildlife, we found the average T. gondii prevalence was 22%, which is comparable to the global human estimate. Among ecological guilds, terrestrial species had lower T. gondii prevalence than aquatic species, with freshwater aquatic taxa having an increased prevalence compared to marine aquatic species. Dietary niches were also influential, with carnivores having an increased risk compared to other trophic feeding groups that have reduced tissue cyst exposure in their diet. With respect to influential life history traits, we found that more vagile wildlife species had higher T. gondii infection rates, perhaps because of the higher cumulative risk of infection during movement through areas with varying T. gondii environmental loads. Domestic farmed species had a higher T. gondii prevalence compared to free-ranging confamilial wildlife species. Through a macroecological approach, we determined the relative significance of transmission routes of a generalist pathogen, demonstrating an increased infection risk for aquatic and carnivorous species and highlighting the importance of preventing pathogen pollution into aquatic environments. Toxoplasma gondii is increasingly understood to be primarily an anthropogenically-associated pathogen whose dissemination is enhanced by ecosystem degradation and human subsidisation of free-roaming domestic cats. Adopting an ecosystem restoration approach to reduce one of the world's most common parasites would synergistically contribute to other initiatives in conservation, feline and wildlife welfare, climate change, food security and public health.


Assuntos
Toxoplasma , Toxoplasmose Animal , Animais , Gatos , Bovinos , Animais Selvagens , Ecossistema , Mamíferos , Prevalência , Ovinos , Suínos , Toxoplasmose Animal/epidemiologia , Toxoplasmose Animal/parasitologia
2.
Sci Total Environ ; 858(Pt 3): 159959, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343822

RESUMO

Cadmium (Cd) is a trace element of toxicological concern that has been monitored in marine birds inhabiting the Canadian Arctic since 1975. Despite nearly 50 years of monitoring, research to date has largely evaluated single species, locations, or time points, and there is as of yet no holistic overview that jointly considers all available Cd data. We addressed this information gap by combining and analyzing most of the existing data on hepatic Cd concentrations in marine birds from the Canadian Arctic. Using data collected between 1975 and 2018 from eight seabird species from 12 Arctic breeding colonies, we examined temporal, spatial, and interspecific variation in hepatic Cd levels, and we evaluated possible drivers of marine bird Cd loads. Hepatic Cd concentrations ranged from 1.6 to 124 µg/g dry weight across species, and were highest in thick-billed murres (Uria lomvia) and king eiders (Somateria spectabilis), and lowest in black guillemots (Cepphus grylle), black-legged kittiwakes (Rissa tridactyla), and long-tailed ducks (Clangula hyemalis). All sites with multiple years of data showed interannual fluctuations in Cd, which were correlated with the North Atlantic Oscillation (NAO) index and with the previous year's June sea ice coverage, where marine birds exhibited higher Cd concentrations in positive NAO years and following years with lower sea ice coverage. Climate change is likely to shift the NAO to being more negative and to reduce sea ice coverage, and our results thus identify various ways by which climate change could alter Cd concentrations in marine birds in the Canadian Arctic. Understanding variations in marine bird contaminant burdens, and how these may be alters by other stressors such as climate change, is important for long-term marine bird conservation efforts.


Assuntos
Cádmio , Canadá
3.
Environ Res ; 204(Pt B): 112022, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34506783

RESUMO

While exposure of birds to oil-related contaminants has been documented, the related adverse effects this exposure has on Arctic marine birds remain unexplored. Metabolomics can play an important role to explore biologically relevant metabolite biomarkers in relation to different stressors, even at benchmark levels of contamination. The aim of this study was to characterize the metabolomics profiles in relation to polycyclic aromatic compounds (PACs) and trace elements in the liver of two seabird species in the Canadian Arctic. In July 2018, black guillemots (Cepphus grylle) and thick-billed murres (Uria lomvia) were collected by hunters from a region where natural oil seeps occur in the seabed near Qikiqtarjuaq, Nunavut, Canada. A total of 121 metabolites were identified in liver tissue samples using reversed phase and hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry platforms to detect non-polar and polar metabolites, respectively. Sixty-nine metabolites showed excellent repeatability and linearity and were used to examine possible effects of oil-related contaminants exposure (PACs and trace elements). Metabolites including 3-hydroxy anthranilic acid, adenine, adenosine, adenosine mono-phosphate, ascorbic acid, butyrylcarnitine, cholic acid, guanosine, guanosine mono-phosphate, inosine, norepinephrine and threonine showed significant differences (more than two fold) between the two species. Elevated adenine and adenosine, along with decreased reduced/oxidized glutathione ratio, highlighted the potential for oxidative stress in murres. Lipid peroxidation and superoxide dismutase activity assays also confirmed these metabolomic findings. These results will help to characterize the baseline metabolomic profiles of Arctic seabird species with different foraging behaviour and trace element burden.


Assuntos
Poluentes Ambientais , Compostos Policíclicos , Oligoelementos , Animais , Regiões Árticas , Benchmarking , Aves , Canadá , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Metabolômica
4.
Mar Pollut Bull ; 171: 112640, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245993

RESUMO

Chemical characterization of plastics ingested by wildlife helps identify sources of plastic pollution in nature and informs assessments of exposure risk to contaminants. In 2016, Red Phalaropes (Phalaropus fulicarius) were found dead on the north coast of British Columbia, Canada, during their southward migration. Previously, ingested particles suspected to be plastics were reported upon gut examination in all carcasses collected, which likely contributed to mortality. Here, we provide chemical identification of the ingested particles using Fourier Transform Infrared (FTIR) spectroscopy. Polymer identification was successful for 41 of the 52 analysed particles (79%): 41 (79%) were confirmed as plastics, 6 (11%) were not plastics, and 5 (10%) could not be identified. The most commonly ingested plastics were polyethylene (42%) and polypropylene (23%), both of which are known to float in the marine environment. Our study highlights the vulnerability of surface foraging seabirds to plastic pollution in the marine environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Colúmbia Britânica , Monitoramento Ambiental , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 744: 140959, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32711326

RESUMO

There is a growing understanding of how oil pollution can affect aquatic ecosystems, including physical and chemical effects. One of the biggest challenges with detecting the effects of oil-related contaminants on biota from resource development is understanding the background levels and potential effects of the exposure of biota to contaminants from various natural and anthropogenic sources prior to large scale oil and gas operations. Seabirds are effective indicators of pollution, and can be useful for tracking oil-related contaminants in the marine environment. We sampled four seabird species (black guillemot, Cepphus grylle; thick-billed murre, Uria lomvia; black-legged kittiwake, Rissa tridactyla; and northern fulmar, Fulmarus glacialis) in the Baffin Bay-Davis Strait region of the Northwest Atlantic and Arctic oceans, an area where natural oil and gas seeps are present but lacking any large-scale oil and gas projects. We found detectable levels of PACs and several trace elements in all species examined. Alkylated PAC levels were higher than parent compounds in all four seabird species examined, with fulmars and murres having the highest levels detected; mean hepatic concentrations of ∑16PAC were 99.05, 46.42, 12.78 and 9.57 ng/g lw, respectively, for guillemots, murres, fulmars and kittiwakes. Overall, PAC concentrations in the seabird species examined were similar to PAC concentrations measured in other bird species in regions with more industrialization. These findings provide data which can be used to assess the current oil-related contaminant exposure of biota in the region. As well, they provide background levels for the region at a time when shipping activity is relatively low, which can used for future comparisons following expected increases in shipping and oil and gas activities in the region.


Assuntos
Charadriiformes , Poluentes Ambientais/análise , Compostos Policíclicos , Oligoelementos , Animais , Regiões Árticas , Aves , Canadá , Ecossistema , Monitoramento Ambiental
7.
Sci Total Environ ; 663: 950-957, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30739863

RESUMO

Substituted diphenylamine antioxidants (SDPAs) and benzotriazole UV stabilizers (BZT-UVs) are contaminants of emerging environmental concern. However, little is known about the occurrence of these contaminants in the Arctic. In this study, we investigated the levels of 11 SDPAs and 6 BZT-UVs in livers and eggs of two seabird species, the black-legged kittiwake (Rissa tridactyla) and northern fulmar (Fulmarus glacialis), as well as the liver of ringed seals (Pusa hispida) from Canadian high- and sub-Arctic sites. The concentrations of ΣSDPAs in seabird livers (median 336 pg g-1, wet weight (ww)) were significantly higher than the eggs (median 24 pg g-1, ww) and the seal livers (median 38 pg g-1, ww), suggesting liver was a primary tissue of SDPA accumulation in seabirds and that seabirds were at greater risk of exposure to SDPAs than marine mammals in the Arctic. The predominant SDPA was monostyryl octyl-diphenylamine and this compound was detected in every seabird and seal sample, indicating the widespread distribution of this contaminant in Arctic food webs. Unlike SDPAs, the detection rate and concentrations of BZT-UVs in seals were higher than in seabirds. The compound 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (UV329) or its isomer 2-(2H-benzotriazol-2-yl)-4-(tert-butyl)-6-(sec-butyl) phenol (UV350) was the predominant BZT-UVs in seals, with the concentrations of ΣBZT-UVs between

Assuntos
Aves/metabolismo , Difenilamina/metabolismo , Exposição Ambiental/análise , Focas Verdadeiras/metabolismo , Triazóis/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Antioxidantes/metabolismo , Regiões Árticas , Canadá , Charadriiformes/metabolismo , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA