Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Mol Cancer ; 23(1): 105, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755661

RESUMO

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteína Companheira de mTOR Insensível à Rapamicina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Ensaios Antitumorais Modelo de Xenoenxerto , MAP Quinase Quinase Quinases/antagonistas & inibidores
2.
Biomolecules ; 14(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397386

RESUMO

Feline leukemia virus C receptor 1a (FLVCR1a), initially identified as a retroviral receptor and localized on the plasma membrane, has emerged as a crucial regulator of heme homeostasis. Functioning as a positive regulator of δ-aminolevulinic acid synthase 1 (ALAS1), the rate-limiting enzyme in the heme biosynthetic pathway, FLVCR1a influences TCA cycle cataplerosis, thus impacting TCA flux and interconnected metabolic pathways. This study reveals an unexplored link between FLVCR1a, heme synthesis, and cholesterol production in endothelial cells. Using cellular models with manipulated FLVCR1a expression and inducible endothelial-specific Flvcr1a-null mice, we demonstrate that FLVCR1a-mediated control of heme synthesis regulates citrate availability for cholesterol synthesis, thereby influencing cellular cholesterol levels. Moreover, alterations in FLVCR1a expression affect membrane cholesterol content and fluidity, supporting a role for FLVCR1a in the intricate regulation of processes crucial for vascular development and endothelial function. Our results underscore FLVCR1a as a positive regulator of heme synthesis, emphasizing its integration with metabolic pathways involved in cellular energy metabolism. Furthermore, this study suggests that the dysregulation of heme metabolism may have implications for modulating lipid metabolism. We discuss these findings in the context of FLVCR1a's potential heme-independent function as a choline importer, introducing additional complexity to the interplay between heme and lipid metabolism.


Assuntos
Ciclo do Ácido Cítrico , Células Endoteliais , Camundongos , Animais , Células Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/metabolismo , Camundongos Knockout , Heme/metabolismo
3.
Eur Urol ; 85(5): 417-421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38184414

RESUMO

Neoadjuvant pembrolizumab has been shown to be a valid treatment for patients affected by muscle-invasive bladder cancer (MIBC), as demonstrated in the PURE-01 clinical trial (NCT02736266). Among the tumor-extrinsic factors influencing immunotherapy efficacy, extensive data highlighted that the microbiome is a central player in immune-mediated anticancer activity. This report aimed to investigate the composition and role of stool microbiome in patients enrolled in the PURE-01 clinical trial. An orthotopic animal model of bladder cancer (MB49-Luc) was used to support some of the findings from human data. An analysis of stool microbiome before pembrolizumab was conducted for 42 patients, of whom 23 showed a pathologic response. The information in the preclinical model of orthotopic bladder cancer treated with anti-PD-1 antibody or control isotype was validated. Linear discriminant analysis effect size and linear models were used to identify the bacterial taxa enriched in either responders or nonresponders. The identified taxa were also tested for their association with event-free survival (EFS). Survival at 31 d after tumor instillation was used as the study endpoint in the preclinical model. Responders and nonresponders emerged to differ in terms of enrichment for 16 bacterial taxa. Of these, the genus Sutterella was enriched in responders, while the species Ruminococcus bromii was enriched in nonresponders. The negative impact of R. bromii on anti-PD-1 antibody activity was also observed in the preclinical model. EFS and survival of the preclinical model showed a negative role of R. bromii. We found different stool bacterial taxa associated with the response or lack of response to neoadjuvant pembrolizumab. Moreover, we provided experimental data about the negative role of R. bromii on immunotherapy response. Further studies are needed to externally validate our findings and provide mechanistic insights about the host-pathogen interactions in MIBC. PATIENT SUMMARY: Using prepembrolizumab stool samples collected from patients enrolled in the PURE-01 clinical trials, we identified some bacterial taxa that were enriched in patients who either responded or did not respond to immunotherapy. Using an animal model of bladder cancer, we gathered further evidence of the negative impact of the Ruminococcus bromii on immunotherapy efficacy. Further studies are needed to confirm the current findings and test the utility of these bacteria as predictive markers of immunotherapy response.


Assuntos
Anticorpos Monoclonais Humanizados , Terapia Neoadjuvante , Ruminococcus , Neoplasias da Bexiga Urinária , Animais , Humanos , Neoplasias da Bexiga Urinária/patologia , Músculos/patologia
4.
Brief Funct Genomics ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801430

RESUMO

Embryonic stem cells (ESCs) preserve the unique ability to differentiate into any somatic cell lineage while maintaining their self-renewal potential, relying on a complex interplay of extracellular signals regulating the expression/activity of pluripotency transcription factors and their targets. Leukemia inhibitory factor (LIF)-activated STAT3 drives ESCs' stemness by a number of mechanisms, including the transcriptional induction of pluripotency factors such as Klf4 and the maintenance of a stem-like epigenetic landscape. However, it is unknown if STAT3 directly controls stem-cell specific non-coding RNAs, crucial to balance pluripotency and differentiation. Applying a bioinformatic pipeline, here we identify Lncenc1 in mouse ESCs as an STAT3-dependent long non-coding RNA that supports pluripotency. Lncenc1 acts in the cytoplasm as a positive feedback regulator of the LIF-STAT3 axis by competing for the binding of microRNA-128 to the 3'UTR of the Klf4 core pluripotency factor mRNA, enhancing its expression. Our results unveil a novel non-coding RNA-based mechanism for LIF-STAT3-mediated pluripotency.

5.
Eur J Immunol ; 53(12): e2350529, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741290

RESUMO

TDC are hematopoietic cells that combine dendritic cell (DC) and conventional T-cell markers and functional properties. They were identified in secondary lymphoid organs (SLOs) of naïve mice as cells expressing CD11c, major histocompatibility molecules (MHC)-II, and the T-cell receptor (TCR). Despite thorough characterization, a physiological role for TDC remains to be determined. Unfortunately, using CD11c as a marker for TDC has the caveat of its upregulation on different cells, including T cells, upon activation. Here, we took advantage of Zbtb46-GFP reporter mice to explore the frequency and localization of TDC in different tissues at steady state and upon viral infection. RNA sequencing analysis confirmed that TDC sorted from Zbtb46-GFP mice have a gene signature that is distinct from conventional T cells and DC. In addition, this reporter model allowed for identification of TDC in situ not only in SLOs but also in the liver and lung of naïve mice. Interestingly, we found that TDC numbers in the SLOs increased upon viral infection, suggesting that TDC might play a role during viral infections. In conclusion, we propose a visualization strategy that might shed light on the physiological role of TDC in several pathological contexts, including infection and cancer.


Assuntos
Linfócitos T , Viroses , Camundongos , Animais , Células Dendríticas/patologia , Antígeno CD11c , Camundongos Endogâmicos C57BL
6.
Nat Commun ; 14(1): 2350, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169737

RESUMO

The p140Cap adaptor protein is a tumor suppressor in breast cancer associated with a favorable prognosis. Here we highlight a function of p140Cap in orchestrating local and systemic tumor-extrinsic events that eventually result in inhibition of the polymorphonuclear myeloid-derived suppressor cell function in creating an immunosuppressive tumor-promoting environment in the primary tumor, and premetastatic niches at distant sites. Integrative transcriptomic and preclinical studies unravel that p140Cap controls an epistatic axis where, through the upstream inhibition of ß-Catenin, it restricts tumorigenicity and self-renewal of tumor-initiating cells limiting the release of the inflammatory cytokine G-CSF, required for polymorphonuclear myeloid-derived suppressor cells to exert their local and systemic tumor conducive function. Mechanistically, p140Cap inhibition of ß-Catenin depends on its ability to localize in and stabilize the ß-Catenin destruction complex, promoting enhanced ß-Catenin inactivation. Clinical studies in women show that low p140Cap expression correlates with reduced presence of tumor-infiltrating lymphocytes and more aggressive tumor types in a large cohort of real-life female breast cancer patients, highlighting the potential of p140Cap as a biomarker for therapeutic intervention targeting the ß-Catenin/ Tumor-initiating cells /G-CSF/ polymorphonuclear myeloid-derived suppressor cell axis to restore an efficient anti-tumor immune response.


Assuntos
Neoplasias da Mama , Feminino , Humanos , beta Catenina/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunidade , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo
7.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792589

RESUMO

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Assuntos
Melanoma , Monócitos , Camundongos , Animais , Monócitos/metabolismo , Diferenciação Celular , Colesterol/metabolismo , Apresentação de Antígeno , Células Dendríticas/metabolismo , Microambiente Tumoral
8.
J Exp Clin Cancer Res ; 42(1): 20, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639824

RESUMO

BACKGROUND: Tumor progression is based on a close interaction between cancer cells and Tumor MicroEnvironment (TME). Here, we focus on the role that Cancer Associated Fibroblasts (CAFs), Mesenchymal Stem Cells (MSCs) and microRNAs (miRs) play in breast cancer and melanoma malignancy. METHODS: We used public databases to investigate miR-214 expression in the stroma compartment of primary human samples and evaluated tumor formation and dissemination following tumor cell injections in miR-214 overexpressing (miR-214over) and knock out (miR-214ko) mice. In addition, we dissected the impact of Conditioned Medium (CM) or Extracellular Vesicles (EVs) derived from miR-214-rich or depleted stroma cells on cell metastatic traits. RESULTS: We evidence that the expression of miR-214 in human cancer or metastasis samples mostly correlates with stroma components and, in particular, with CAFs and MSCs. We present data revealing that the injection of tumor cells in miR-214over mice leads to increased extravasation and metastasis formation. In line, treatment of cancer cells with CM or EVs derived from miR-214-enriched stroma cells potentiate cancer cell migration/invasion in vitro. Conversely, dissemination from tumors grown in miR-214ko mice is impaired and metastatic traits significantly decreased when CM or EVs from miR-214-depleted stroma cells are used to treat cells in culture. Instead, extravasation and metastasis formation are fully re-established when miR-214ko mice are pretreated with miR-214-rich EVs of stroma origin. Mechanistically, we also show that tumor cells are able to induce miR-214 production in stroma cells, following the activation of IL-6/STAT3 signaling, which is then released via EVs subsequently up-taken by cancer cells. Here, a miR-214-dependent pro-metastatic program becomes activated. CONCLUSIONS: Our findings highlight the relevance of stroma-derived miR-214 and its release in EVs for tumor dissemination, which paves the way for miR-214-based therapeutic interventions targeting not only tumor cells but also the TME.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Camundongos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Mama/patologia , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral
9.
Cancers (Basel) ; 14(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35565274

RESUMO

The alterations of metabolic pathways in cancer have been investigated for many years, beginning long before the discovery of the role of oncogenes and tumor suppressors, and the last few years have witnessed renewed interest in this topic. Large-scale molecular and clinical data on tens of thousands of samples allow us to tackle the problem from a general point of view. Here, we show that transcriptomic profiles of tumors can be exploited to define metabolic cancer subtypes, which can be systematically investigated for associations with other molecular and clinical data. We find thousands of significant associations between metabolic subtypes and molecular features such as somatic mutations, structural variants, epigenetic modifications, protein abundance and activation, and with clinical/phenotypic data, including survival probability, tumor grade, and histological types, which we make available to the community in a dedicated web resource. Our work provides a methodological framework and a rich database of statistical associations, which will contribute to the understanding of the role of metabolic alterations in cancer and to the development of precision therapeutic strategies.

10.
Front Genet ; 13: 1045301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699457

RESUMO

Genomic sequence mutations can be pathogenic in both germline and somatic cells. Several authors have observed that often the same genes are involved in cancer when mutated in somatic cells and in genetic diseases when mutated in the germline. Recent advances in high-throughput sequencing techniques have provided us with large databases of both types of mutations, allowing us to investigate this issue in a systematic way. Hence, we applied a machine learning based framework to this problem, comparing multiple models. The models achieved significant predictive power as shown by both cross-validation and their application to recently discovered gene/phenotype associations not used for training. We found that genes characterized by high frequency of somatic mutations in the most common cancers and ancient evolutionary age are most likely to be involved in abnormal phenotypes and diseases. These results suggest that the combination of tolerance for mutations at the cell viability level (measured by the frequency of somatic mutations in cancer) and functional relevance (demonstrated by evolutionary conservation) are the main predictors of disease genes. Our results thus confirm the deep relationship between pathogenic mutations in somatic and germline cells, provide new insight into the common origin of cancer and genetic diseases, and can be used to improve the identification of new disease genes.

11.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852877

RESUMO

BACKGROUND: Biological networks are often used to describe the relationships between relevant entities, particularly genes and proteins, and are a powerful tool for functional genomics. Many important biological problems can be investigated by comparing biological networks between different conditions or networks obtained with different techniques. FINDINGS: We show that contrast subgraphs, a recently introduced technique to identify the most important structural differences between 2 networks, provide a versatile tool for comparing gene and protein networks of diverse origin. We demonstrate the use of contrast subgraphs in the comparison of coexpression networks derived from different subtypes of breast cancer, coexpression networks derived from transcriptomic and proteomic data, and protein-protein interaction networks assayed in different cell lines. CONCLUSIONS: These examples demonstrate how contrast subgraphs can provide new insight in functional genomics by extracting the gene/protein modules whose connectivity is most altered between 2 conditions or experimental techniques.


Assuntos
Perfilação da Expressão Gênica , Proteômica , Linhagem Celular , Redes Reguladoras de Genes , Genômica
12.
Cancers (Basel) ; 13(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34282769

RESUMO

Transcriptome data provide a valuable resource for the study of cancer molecular mechanisms, but technical biases, sample heterogeneity, and small sample sizes result in poorly reproducible lists of regulated genes. Additionally, the presence of multiple cellular components contributing to cancer development complicates the interpretation of bulk transcriptomic profiles. To address these issues, we collected 48 microarray datasets derived from laser capture microdissected stroma or epithelium in breast tumors and performed a meta-analysis identifying robust lists of differentially expressed genes. This was used to create a database with carefully harmonized metadata that we make freely available to the research community. As predicted, combining the results of multiple datasets improved statistical power. Moreover, the separate analysis of stroma and epithelium allowed the identification of genes with different contributions in each compartment, which would not be detected by bulk analysis due to their distinct regulation in the two compartments. Our method can be profitably used to help in the discovery of biomarkers and the identification of functionally relevant genes in both the stroma and the epithelium. This database was made to be readily accessible through a user-friendly web interface.

13.
Sci Adv ; 7(27)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34215585

RESUMO

Targeting of the most aggressive tumor cell subpopulations is key for effective management of most solid malignancies. However, the metastable nature of tumor heterogeneity, which allows cells to transition between strong and weak tumorigenic phenotypes, and the lack of reliable markers of tumor-promoting properties hamper identification of the most relevant cells. To overcome these obstacles, we designed a functional microRNA (miR)-based live-cell reporter assay to identify highly tumorigenic cells in xenotransplants of primary Ewing sarcoma (EwS) 3D cultures. Leveraging the inverse relationship between cell pluripotency and miR-145 expression, we successfully separated highly tumorigenic, metastasis-prone (miR-145low) cells from poorly tumorigenic, nonmetastatic (miR-145high) counterparts. Gene expression and functional studies of the two cell populations identified the EPHB2 receptor as a prognostic biomarker in patients with EwS and a major promoter of metastasis. Our study provides a simple and powerful means to identify and isolate tumor cells that display aggressive behavior.

14.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34187875

RESUMO

The oncogenic role of common fragile sites (CFS), focal and pervasive gaps in the cancer genome arising from replicative stress, remains controversial. Exploiting the TCGA dataset, we found that in most CFS the genes residing within the associated focal deletions are down-regulated, including proteins involved in tumour immune recognition. In a subset of CFS, however, the residing genes are surprisingly overexpressed. Within the most frequent CFS in this group, FRA4F, which is deleted in up to 18% of cancer cases and harbours the CCSER1 gene, we identified a region which includes an intronic, antisense pseudogene, TMSB4XP8. TMSB4XP8 focal ablation or transcriptional silencing elicits the overexpression of CCSER1, through a cis-acting mechanism. CCSER1 overexpression increases proliferation and triggers centrosome amplifications, multinuclearity, and aberrant mitoses. Accordingly, FRA4F is associated in patient samples to mitotic genes deregulation and genomic instability. As a result, cells overexpressing CCSER1 become sensitive to the treatment with aurora kinase inhibitors. Our findings point to a novel tumourigenic mechanism where focal deletions increase the expression of a new class of "dormant" oncogenes.


Assuntos
Proteínas de Ciclo Celular/genética , Sítios Frágeis do Cromossomo , Deleção de Genes , Regulação para Cima , Linhagem Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Células HEK293 , Células HeLa , Humanos , Mitose , Pseudogenes
15.
Cell Rep ; 35(11): 109252, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133926

RESUMO

Heme is an iron-containing porphyrin of vital importance for cell energetic metabolism. High rates of heme synthesis are commonly observed in proliferating cells. Moreover, the cell-surface heme exporter feline leukemia virus subgroup C receptor 1a (FLVCR1a) is overexpressed in several tumor types. However, the reasons why heme synthesis and export are enhanced in highly proliferating cells remain unknown. Here, we illustrate a functional axis between heme synthesis and heme export: heme efflux through the plasma membrane sustains heme synthesis, and implementation of the two processes down-modulates the tricarboxylic acid (TCA) cycle flux and oxidative phosphorylation. Conversely, inhibition of heme export reduces heme synthesis and promotes the TCA cycle fueling and flux as well as oxidative phosphorylation. These data indicate that the heme synthesis-export system modulates the TCA cycle and oxidative metabolism and provide a mechanistic basis for the observation that both processes are enhanced in cells with high-energy demand.


Assuntos
Ciclo do Ácido Cítrico , Heme/biossíntese , Fosforilação Oxidativa , Animais , Transporte Biológico , Células CACO-2 , Heme/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos SCID , Receptores Virais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Lett ; 510: 13-23, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-33862151

RESUMO

An interactive crosstalk between tumor and stroma cells is essential for metastatic melanoma progression. We evidenced that ESDN/DCBLD2/CLCP1 plays a crucial role in endothelial cells during the spread of melanoma. Precisely, increased extravasation and metastasis formation were revealed in ESDN-null mice injected with melanoma cells, even if the primary tumor growth, vessel permeability, and angiogenesis were not enhanced. Interestingly, improved adhesion of melanoma cells to ESDN-depleted endothelial cells was observed, due to the presence of higher levels of E-selectin transcripts/proteins in ESDN-defective cells. In accordance with these results, anticorrelation was observed between ESDN and E-selectin in human endothelial cells. Most importantly, our data revealed that cimetidine, an E-selectin inhibitor, was able to block cell adhesion, extravasation, and metastasis formation in ESDN-null mice, underlying a major role of ESDN in E-selectin transcription upregulation, which according to our data, may presumably be linked to STAT3. Based on our results, we propose a protective role for ESDN during the spread of melanoma and reveal its therapeutic potential.


Assuntos
Selectina E/antagonistas & inibidores , Células Endoteliais/metabolismo , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Selectina E/biossíntese , Selectina E/metabolismo , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Microambiente Tumoral
17.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526692

RESUMO

A hallmark of cancer, including pancreatic ductal adenocarcinoma (PDA), is a massive stromal and inflammatory reaction. Many efforts have been made to identify the anti- or protumoral role of cytokines and immune subpopulations within the stroma. Here, we investigated the role of interleukin-17A (IL17A) and its effect on tumor fibroblasts and the tumor microenvironment. We used a spontaneous PDA mouse model (KPC) crossed to IL17A knockout mice to show an extensive desmoplastic reaction, without impaired immune infiltration. Macrophages, especially CD80+ and T cells, were more abundant at the earlier time point. In T cells, a decrease in FoxP3+ cells and an increase in CD8+ T cells were observed in KPC/IL17A-/- mice. Fibroblasts isolated from IL17A+/+ and IL17A-/- KPC mice revealed very different messenger RNA (mRNA) and protein profiles. IL17A-/- fibroblasts displayed the ability to restrain tumor cell invasion by producing factors involved in extracellular matrix remodeling, increasing T cell recruitment, and producing higher levels of cytokines and chemokines favoring T helper 1 cell recruitment and activation and lower levels of those recruiting myeloid/granulocytic immune cells. Single-cell quantitative PCR on isolated fibroblasts confirmed a very divergent profile of IL17A-proficient and -deficient cells. All these features can be ascribed to increased levels of IL17F observed in the sera of IL17A-/- mice, and to the higher expression of its cognate receptor (IL17RC) specifically in IL17A-/- cancer-associated fibroblasts (CAFs). In addition to the known effects on neoplastic cell transformation, the IL17 cytokine family uniquely affects fibroblasts, representing a suitable candidate target for combinatorial immune-based therapies in PDA.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Interleucina-17/genética , Receptores de Interleucina/genética , Adenocarcinoma/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Humanos , Camundongos , Camundongos Knockout , Microambiente Tumoral/genética
18.
Life Sci Alliance ; 4(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33361335

RESUMO

Synovial sarcoma (SyS) is an aggressive mesenchymal malignancy invariably associated with the chromosomal translocation t(X:18; p11:q11), which results in the in-frame fusion of the BAF complex gene SS18 to one of three SSX genes. Fusion of SS18 to SSX generates an aberrant transcriptional regulator, which, in permissive cells, drives tumor development by initiating major chromatin remodeling events that disrupt the balance between BAF-mediated gene activation and polycomb-dependent repression. Here, we developed SyS organoids and performed genome-wide epigenomic profiling of these models and mesenchymal precursors to define SyS-specific chromatin remodeling mechanisms and dependencies. We show that SS18-SSX induces broad BAF domains at its binding sites, which oppose polycomb repressor complex (PRC) 2 activity, while facilitating recruitment of a non-canonical (nc)PRC1 variant. Along with the uncoupling of polycomb complexes, we observed H3K27me3 eviction, H2AK119ub deposition and the establishment of de novo active regulatory elements that drive SyS identity. These alterations are completely reversible upon SS18-SSX depletion and are associated with vulnerability to USP7 loss, a core member of ncPRC1.1. Using the power of primary tumor organoids, our work helps define the mechanisms of epigenetic dysregulation on which SyS cells are dependent.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Sarcoma Sinovial/genética , Sítios de Ligação , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Complexos Multiproteicos/metabolismo , Organoides , Ligação Proteica , Transporte Proteico , Sarcoma Sinovial/metabolismo , Transcriptoma
19.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322692

RESUMO

Biological systems respond to perturbations through the rewiring of molecular interactions, organised in gene regulatory networks (GRNs). Among these, the increasingly high availability of transcriptomic data makes gene co-expression networks the most exploited ones. Differential co-expression networks are useful tools to identify changes in response to an external perturbation, such as mutations predisposing to cancer development, and leading to changes in the activity of gene expression regulators or signalling. They can help explain the robustness of cancer cells to perturbations and identify promising candidates for targeted therapy, moreover providing higher specificity with respect to standard co-expression methods. Here, we comprehensively review the literature about the methods developed to assess differential co-expression and their applications to cancer biology. Via the comparison of normal and diseased conditions and of different tumour stages, studies based on these methods led to the definition of pathways involved in gene network reorganisation upon oncogenes' mutations and tumour progression, often converging on immune system signalling. A relevant implementation still lagging behind is the integration of different data types, which would greatly improve network interpretability. Most importantly, performance and predictivity evaluation of the large variety of mathematical models proposed would urgently require experimental validations and systematic comparisons. We believe that future work on differential gene co-expression networks, complemented with additional omics data and experimentally tested, will considerably improve our insights into the biology of tumours.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes , Neoplasias/metabolismo , Transdução de Sinais/genética , Algoritmos , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Transcriptoma/genética
20.
ESMO Open ; 5(5): e000937, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33122354

RESUMO

PURPOSE: Overexpression of miR-100 in stem cells derived from basal-like breast cancers causes loss of stemness, induction of luminal breast cancer markers and response to endocrine therapy. We, therefore, explored miR-100 as a novel biomarker in patients with luminal breast cancer. METHODS: miR-100 expression was studied in 90 patients with oestrogen-receptor-positive/human-epidermal growth factor receptor 2-negative breast cancer enrolled in a prospective study of endocrine therapy given either preoperatively, or for the treatment of de novo metastatic disease. Response was defined as a Ki67 ≤2.7% after 21±3 days of treatment. The prognostic role of miR-100 expression was evaluated in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) breast cancer datasets. Additionally, we explored the correlation between miR-100 and the expression its targets reported as being associated with endocrine resistance. Finally, we evaluated whether a signature based on miR-100 and its target genes could predict the luminal A molecular subtype. RESULTS: Baseline miR-100 was significantly anticorrelated with baseline and post-treatment Ki67 (p<0.001 and 0.004, respectively), and independently associated with response to treatment (OR 3.329, p=0.047). In the METABRIC dataset, high expression of miR-100 identified women with luminal A tumours treated with adjuvant endocrine therapy with improved overall survival (HR 0.55, p<0.001). miR-100 was negatively correlated with PLK1, FOXA1, mTOR and IGF1R expression, potentially explaining its prognostic effect. Finally, a miR-100-based signature developed in patients enrolled in the prospective study outperformed Ki67 alone in predicting the luminal A phenotype. CONCLUSIONS: Our findings suggest that miR-100 should be further explored as a biomarker in patients with luminal breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Fator 3-alfa Nuclear de Hepatócito , Humanos , MicroRNAs/genética , Prognóstico , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA