Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35595324

RESUMO

Progesterone receptor membrane component (PGRMC) proteins play important roles in tumor growth, progression, and chemoresistance, of which PGRMC1 is the best characterized. The ancestral member predates the evolution of metazoans, so it is perhaps not surprising that many of the purported actions of PGRMC proteins are rooted in fundamental metabolic processes such as proliferation, apoptosis, and DNA damage responses. Despite mediating some of the actions of progesterone (P4) and being fundamentally required for female fertility, PGRMC1 and PGRMC2 are broadly expressed in most tissues. As such, these proteins likely have both progesterone-dependent and progesterone-independent functions. It has been proposed that PGRMC1 acquired the ability to mediate P4 actions over evolutionary time through acquisition of its cytochrome b5-like heme/sterol-binding domain. Diverse reproductive and nonreproductive diseases associate with altered PGRMC1 expression, epigenetic regulation, or gene silencing mechanisms, some of which include polycystic ovarian disease, premature ovarian insufficiency, endometriosis, Alzheimer disease, and cancer. Although many studies have been completed using transformed cell lines in culture or in xenograft tumor approaches, recently developed transgenic model organisms are offering new insights in the physiological actions of PGRMC proteins, as well as pathophysiological and oncogenic consequences when PGRMC expression is altered. The purpose of this mini-review is to provide an overview of PGRMC proteins in cancer and to offer discussion of where this field must go to solidify PGRMC proteins as central contributors to the oncogenic process.


Assuntos
Endometriose , Neoplasias , Endometriose/metabolismo , Epigênese Genética , Feminino , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias/genética , Progesterona , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
5.
Cancers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885064

RESUMO

Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs' mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.

7.
Reproduction ; 159(6): 707-717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32191914

RESUMO

We previously demonstrated that 5'-AMP-activated protein kinase (AMPK) is essential for normal reproductive functions in female mice. Conditional ablation of Prkaa1 and Prkaa2, genes that encode the α1 and α2 catalytic domains of AMPK, resulted in early reproductive senescence, faulty artificial decidualization, uterine inflammation and fibrotic postparturient endometrial regeneration. We also noted a delay in the timing of embryo implantation in Prkaa1/2d/d female mice, suggesting a role for AMPK in establishing uterine receptivity. As outlined in new studies here, conditional uterine ablation of Prkaa1/2 led to an increase in ESR1 in the uteri of Prkaa1/2d/d mice, resulting in prolonged epithelial cell proliferation and retention of E2-induced gene expression (e.g. Msx1, Muc1, Ltf) through the implantation window. Within the stromal compartment, stromal cell proliferation was reduced by five-fold in Prkaa1/2d/d mice, and this was accompanied by a significant decrease in cell cycle regulatory genes and aberrant expression of decidualization marker genes such as Hand2, Bmp2, Fst and Inhbb. This phenotype is consistent with our prior study, demonstrating a failure of the Prkaa1/2d/d uterus to undergo decidualization. Despite these uterine defects, ovarian function seemed to be normal following ablation of Prkaa1/2 from peri-ovulatory follicles in which ovulation, luteinization and serum progesterone levels were not different on day 5 of pregnancy or pseudopregnancy between Prkaa1/2fl/fl and Prkaa1/2d/d mice. These cumulative findings demonstrate that AMPK activity plays a prominent role in mediating several steroid hormone-dependent events such as epithelial cell proliferation, uterine receptivity and decidualization as pregnancy is established.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Implantação do Embrião/fisiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Útero/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Implantação do Embrião/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Camundongos , Camundongos Knockout , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Útero/citologia , Útero/efeitos dos fármacos
8.
Menopause ; 26(9): 945-946, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31453954
9.
Reproduction ; 156(6): 501-513, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30328345

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved heterotrimeric complex that acts as an intracellular energy sensor. Based on recent observations of AMPK expression in all structures of the female reproductive system, we hypothesized that AMPK is functionally required for maintaining fertility in the female. This hypothesis was tested by conditionally ablating the two catalytic alpha subunits of AMPK, Prkaa1 and Prkaa2, using Pgr-cre mice. After confirming the presence of PRKAA1, PRKAA2 and the active phospho-PRKAA1/2 in the gravid uterus by immunohistochemistry, control (Prkaa1/2 fl/fl ) and double conditional knockout mice (Prkaa1/2 d/d ) were placed into a six-month breeding trial. While the first litter size was comparable between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice (P = 0.8619), the size of all subsequent litters was dramatically reduced in Prkaa1/2 d/d female mice (P = 0.0015). All Prkaa1/2 d/d female mice experienced premature reproductive senescence or dystocia by the fourth parity. This phenotype manifested despite no difference in estrous cycle length, ovarian histology in young and old nulliparous or multiparous animals, mid-gestation serum progesterone levels or uterine expression of Esr1 or Pgr between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice suggesting that the hypothalamic-pituitary-ovary axis remained unaffected by PRKAA1/2 deficiency. However, an evaluation of uterine histology from multiparous animals identified extensive endometrial fibrosis and disorganized stromal-glandular architecture indicative of endometritis, a condition that causes subfertility or infertility in most mammals. Interestingly, Prkaa1/2 d/d female mice failed to undergo artificial decidualization. Collectively, these findings suggest that AMPK plays an essential role in endometrial regeneration following parturition and tissue remodeling that accompanies decidualization.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endometrite/enzimologia , Endométrio/enzimologia , Fertilidade , Regeneração , Reprodução , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Animais , Decídua/enzimologia , Decídua/patologia , Decídua/fisiopatologia , Distocia/enzimologia , Distocia/genética , Distocia/fisiopatologia , Endometrite/genética , Endometrite/patologia , Endometrite/fisiopatologia , Endométrio/patologia , Endométrio/fisiopatologia , Feminino , Fibrose , Tamanho da Ninhada de Vivíparos , Camundongos Knockout , Paridade , Gravidez
10.
Stem Cells Dev ; 27(24): 1715-1728, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30328770

RESUMO

Uterine remodeling during pregnancy is a fundamental, dynamic process required for successful propagation of eutherian species. The uterus can increase in size up to 40-fold during pregnancy, which is largely attributed to expansion of the myometrium by hyperplasia and hypertrophy. After pregnancy, the uterus repairs the remodeled or "damaged" tissue during uterine involution (INV). Little is known about this repair process, particularly the role of mesenchymal stem/progenitor cells. The objective of this study was to identify and characterize putative mesenchymal stem/progenitor cells in the murine myometrium using a combination of label retention and mesenchymal stem cell (MSC) marker expression and a pregnancy and uterine INV model. Tet-off transgenic mice with the Cre-lox system were used to specifically label mesenchymal cells (ie, myometrial and endometrial stromal cells) within the uterus while avoiding other cell types (eg, epithelial, immune, and endothelial cells) to identify slowly dividing cells and assess their stem cell qualities. We identified myometrial label-retaining cells (LRCs) that persisted for at least 3 months, expressed CD146 and CD140b (MSC markers), and proliferated at a higher rate during uterine INV compared with nonlabeled cells. The LRCs did not appear to express either estrogen receptor alpha or progesterone receptor, nor did the number of LRCs change at different estrous stages or in response to exogenous estradiol or progesterone administration, suggesting that LRCs were not involved in normal estrous cycling. The results from this study provide important insight into putative stem/progenitor cells in the myometrium and their possible role in uterine physiology.


Assuntos
Células-Tronco Mesenquimais/citologia , Miométrio/citologia , Regeneração , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Proliferação de Células , Células Cultivadas , Endométrio/citologia , Endométrio/fisiologia , Ciclo Estral/fisiologia , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Miométrio/fisiologia , Gravidez/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
11.
Clin Oncol Res ; 1(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30234199

RESUMO

STAT3 plays a central role in oncogenesis by mediating cell survival, growth, and differentiation. It is constitutively activated in breast cancer. We investigated the role of STAT3 in tumor development by knocking down STAT3 levels in MDA-MB-231 triple negative breast cancer cells using short hairpin RNA. The tumor forming potential of these STAT3-depleted cells was assessed by xenografts in immunocompromised NOD SCID mice. Contrary to its accepted tumor promoting role, we found STAT3 to be a negative regulator of growth in MDA-MB-231- derived tumors. Although similar observations have been made in thyroid carcinoma and lung adenocarcinoma xenograft studies, our novel results showed for the first time that the role of STAT3 in promoting tumorigenesis may be context-specific, and that STAT3 may actually be a negative regulator of certain breast-cancer types. Studies to identify the mechanisms of STAT3's negative regulatory role may be useful in developing STAT3-based therapeutics.

12.
Anim Reprod Sci ; 187: 28-36, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29029875

RESUMO

Pregnancy maintenance depends on the maternal recognition of pregnancy (MRP), a physiological process by which the lifespan of the corpus luteum is prolonged. This mechanism is not well characterized in camelids. The objectives of the present research were to determine if exogenous oxytocin prolongs the corpus luteum activity in alpacas and to evaluate expression and localization of oxytocin receptors within the endometrium at 9 and 14days post-mating. In the oxytocin studies, plasma progesterone profiles were determined after ovulation in the same alpacas on 2 cycles: one cycle without oxytocin treatment and one cycle with oxytocin treatment. Oxytocin was administered daily by intramuscular injections (IM) at a dose of 20IU (experiment 1, n=6) or 60IU (experiment 2, n=7 from day 3 through day 10 after induction of ovulation with GnRH IM. There was no significant difference in the length of the luteal phase (i.e. corpus luteum lifespan) between the treated and control cycles using either 20 or 60IU of oxytocin. In the final experiment, uteri from open and pregnant alpacas (n=4 per group) at 9 and 14days post-mating were evaluated for expressions of oxytocin receptors by immunohistochemistry. No significant difference (P≤0.05) in the expression of oxytocin receptors was observed between open and pregnant animals in either staining intensity or tissue localization. We conclude that oxytocin is not involved in luteolysis and early MRP in alpacas.


Assuntos
Camelídeos Americanos/fisiologia , Corpo Lúteo/fisiologia , Luteólise/metabolismo , Ocitócicos/farmacologia , Ocitocina/farmacologia , Animais , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Luteólise/efeitos dos fármacos , Ovulação , Gravidez , Progesterona/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(6): E1018-E1026, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28049832

RESUMO

Establishment of pregnancy is a critical event, and failure of embryo implantation and stromal decidualization in the uterus contribute to significant numbers of pregnancy losses in women. Glands of the uterus are essential for establishment of pregnancy in mice and likely in humans. Forkhead box a2 (FOXA2) is a transcription factor expressed specifically in the glands of the uterus and is a critical regulator of postnatal uterine gland differentiation in mice. In this study, we conditionally deleted FOXA2 in the adult mouse uterus using the lactotransferrin Cre (Ltf-Cre) model and in the neonatal mouse uterus using the progesterone receptor Cre (Pgr-Cre) model. The uteri of adult FOXA2-deleted mice were morphologically normal and contained glands, whereas the uteri of neonatal FOXA2-deleted mice were completely aglandular. Notably, adult FOXA2-deleted mice are completely infertile because of defects in blastocyst implantation and stromal cell decidualization. Leukemia inhibitory factor (LIF), a critical implantation factor of uterine gland origin, was not expressed during early pregnancy in adult FOXA2-deleted mice. Intriguingly, i.p. injections of LIF initiated blastocyst implantation in the uteri of both gland-containing and glandless adult FOXA2-deleted mice. Although pregnancy was rescued by LIF and was maintained to term in uterine gland-containing adult FOXA2-deleted mice, pregnancy failed by day 10 in neonatal FOXA2-deleted mice lacking uterine glands. These studies reveal a previously unrecognized role for FOXA2 in regulation of adult uterine function and fertility and provide original evidence that uterine glands and, by inference, their secretions play important roles in blastocyst implantation and stromal cell decidualization.


Assuntos
Fertilidade/genética , Fator 3-beta Nuclear de Hepatócito/genética , Infertilidade/genética , Útero/metabolismo , Animais , Animais Recém-Nascidos , Decídua/metabolismo , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Masculino , Camundongos Knockout , Camundongos Transgênicos
14.
Endocrinology ; 158(3): 640-651, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28005395

RESUMO

The nonclassical progesterone receptors progesterone receptor membrane component (PGRMC) 1 and PGRMC2 have been implicated in regulating cell survival of endometrial and ovarian cells in vitro and are abundantly expressed in these cell types. The objective of this study was to determine if Pgrmc1 and Pgrmc2 are essential for normal female reproduction. To accomplish this objective, Pgrmc1 and/or Pgrmc2 floxed mice (Pgrmc2fl/fl and Pgrmc1/2fl/fl) were crossed with Pgr-cre mice, which resulted in the conditional ablation of Pgrmc1 and/or Pgrmc2 from female reproductive tissues (i.e.,Pgrmc2d/d and Pgrmc1/2d/d mice). A breeding trial revealed that conditional ablation of Pgrmc2 initially led to subfertility, with Pgrmc2d/d female mice producing 47% fewer pups/litter than Pgrmc2fl/fl mice (P = 0.001). Pgrmc2d/d mice subsequently underwent premature reproductive senescence by parities 2 to 5, producing 37.8% fewer litters overall during the trial compared with Pgrmc2fl/fl mice (P = 0.020). Similar results were observed with Pgrmc1/2d/d mice. Based on ovarian morphology and serum P4, the subfertility/infertility was not due to faulty ovulation or luteal insufficiency. Rather an analysis of midgestation implantation sites revealed that postimplantation embryonic death was the major cause of the subfertility/infertility. As with our previous report of Pgrmc1d/d mice, Pgrmc2d/d and Pgrmc1/2d/d mice developed endometrial cysts consistent with accelerated aging of this tissue. Given the timing of postimplantation embryonic demise, uterine decidualization may be disrupted in mice deficient in PGRMC2 or PGRMC1/2. Overall, this study revealed that Pgrmc1 and/or Pgrmc2 are required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan.


Assuntos
Fertilidade , Proteínas de Membrana/fisiologia , Ovário/fisiologia , Receptores de Progesterona/fisiologia , Útero/fisiologia , Senilidade Prematura/genética , Senilidade Prematura/patologia , Animais , Perda do Embrião , Feminino , Camundongos , Camundongos Transgênicos , Útero/patologia
15.
Endocrinology ; 157(9): 3309-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27309940

RESUMO

Progesterone (P4) is essential for female fertility. The objective of this study was to evaluate the functional requirement of the nonclassical P4 receptor (PGR), PGR membrane component 1, in regulating female fertility. To achieve this goal, the Pgrmc1 gene was floxed by insertion of loxP sites on each side of exon 2. Pgrmc1 floxed (Pgrmc1(fl/fl)) mice were crossed with Pgr(cre) or Amhr2(cre) mice to delete Pgrmc1 (Pgrmc1(d/d)) from the female reproductive tract. A 6-month breeding trial revealed that conditional ablation of Pgrmc1 with Pgr(cre/+) mice resulted in a 40% reduction (P = .0002) in the number of pups/litter. Neither the capacity to ovulate in response to gonadotropin treatment nor the expression of PGR and the estrogen receptor was altered in the uteri of Pgrmc1(d/d) mice compared with Pgrmc1(fl/fl) control mice. Although conditional ablation of Pgrmc1 from mesenchymal tissue using Amhr2(cre/+) mice did not reduce the number of pups/litter, the total number of litters born in the 6-month breeding trial was significantly decreased (P = .041). In addition to subfertility, conditional ablation of Pgrmc1 using either Amhr2(cre/+) or Pgr(cre/+) mice resulted in the development of endometrial cysts starting around 4 months of age. Interestingly, pregnancy attenuated the formation of these uterine cysts. These new findings demonstrate that PGR membrane component 1 plays an important role in female fertility and uterine tissue homeostasis.


Assuntos
Endométrio/fisiologia , Fertilidade , Proteínas de Membrana/fisiologia , Receptores de Progesterona/fisiologia , Animais , Cistos/etiologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Inativação Gênica , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Receptores de Progesterona/metabolismo
17.
Cancer Biol Ther ; 17(3): 262-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26785864

RESUMO

Triple negative breast cancers (TNBCs) are highly aggressive and grow in response to sex steroid hormones despite lacking expression of the classical estrogen (E2) and progesterone (P4) receptors. Since P4 receptor membrane component 1 (PGRMC1) is expressed in breast cancer tumors and is known to mediate P4-induced cell survival, this study was designed to determine the expression of PGRMC1 in TNBC tumors and the involvement of PGRMC1 in regulating proliferation and survival of TNBC cells in vitro and the growth of TNBC tumors in vivo. For the latter studies, the MDA-MB-231 (MDA) cell line derived from TNBC was used. These cells express PGRMC1 but lack expression of the classical P4 receptor. A lentiviral-based shRNA approach was used to generate a stably transfected PGRMC1-deplete MDA line for comparison to the PGRMC1-intact MDA line. The present studies demonstrate that PGRMC1: 1) is expressed in TNBC cells; 2) mediates the ability of P4 to suppress TNBC cell mitosis in vitro; 3) is required for P4 to reduce the apoptotic effects of doxorubicin in vitro; and 4) facilitates TNBC tumor formation and growth in vivo. Taken together, these findings indicate that PGRMC1 plays an important role in regulating the growth and survival of TNBC cells in vitro and ultimately in the formation and development of these tumors in vivo. Thus, PGRMC1 may be a therapeutic target for TNBCs.


Assuntos
Proteínas de Membrana/biossíntese , Receptores de Progesterona/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Receptores de Progesterona/metabolismo , Transfecção , Neoplasias de Mama Triplo Negativas/patologia
18.
Cell ; 161(6): 1334-44, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046438

RESUMO

Females may display dramatically different behavior depending on their state of ovulation. This is thought to occur through sex-specific hormones acting on behavioral centers in the brain. Whether incoming sensory activity also differs across the ovulation cycle to alter behavior has not been investigated. Here, we show that female mouse vomeronasal sensory neurons (VSNs) are temporarily and specifically rendered "blind" to a subset of male-emitted pheromone ligands during diestrus yet fully detect and respond to the same ligands during estrus. VSN silencing occurs through the action of the female sex-steroid progesterone. Not all VSNs are targeted for silencing; those detecting cat ligands remain continuously active irrespective of the estrous state. We identify the signaling components that account for the capacity of progesterone to target specific subsets of male-pheromone responsive neurons for inactivation. These findings indicate that internal physiology can selectively and directly modulate sensory input to produce state-specific behavior. PAPERCLIP.


Assuntos
Ciclo Estral , Camundongos/fisiologia , Comportamento Sexual Animal , Olfato , Órgão Vomeronasal/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Feromônios/metabolismo , Progesterona/metabolismo , Proteínas/química , Caracteres Sexuais , Órgão Vomeronasal/citologia
19.
Cancer Lett ; 356(2 Pt B): 434-42, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25304370

RESUMO

Endometrial cancer is the leading gynecologic cancer in women in the United States with 52,630 women predicted to be diagnosed with the disease in 2014. The objective of this study was to determine if progesterone (P4) receptor membrane component 1 (PGRMC1) influenced endometrial cancer cell viability in response to chemotherapy in vitro and in vivo. A lentiviral-based shRNA knockdown approach was used to generate stable PGRMC1-intact and PGRMC1-deplete Ishikawa endometrial cancer cell lines that also lacked expression of the classical progesterone receptor (PGR). Progesterone treatment inhibited mitosis of PGRMC1-intact, but not PGRMC1-deplete cells, suggesting that PGRMC1 mediates the anti-mitotic actions of P4. To test the hypothesis that PGRMC1 attenuates chemotherapy-induced apoptosis, PGRMC1-intact and PGRMC1-deplete cells were treated in vitro with vehicle, P4 (1 µM), doxorubicin (Dox, 2 µg/ml), or P4 + Dox for 48 h. Doxorubicin treatment of PGRMC1-intact cells resulted in a significant increase in cell death; however, co-treatment with P4 significantly attenuated Dox-induced cell death. This response to P4 was lost in PGRMC1-deplete cells. To extend these observations in vivo, a xenograft model was employed where PGRMC1-intact and PGRMC1-deplete endometrial tumors were generated following subcutaneous and intraperitoneal inoculation of immunocompromised NOD/SCID and nude mice, respectively. Tumors derived from PGRMC1-deplete cells grew slower than tumors from PGRMC1-intact cells. Mice harboring endometrial tumors were then given three treatments of vehicle (1:1 cremophor EL: ethanol + 0.9% saline) or chemotherapy [Paclitaxel (15 mg/kg, i.p.) followed after an interval of 30 minutes by CARBOplatin (50 mg/kg)] at five day intervals. In response to chemotherapy, tumor volume decreased approximately four-fold more in PGRMC1-deplete tumors when compared with PGRMC1-intact control tumors, suggesting that PGRMC1 promotes tumor cell viability during chemotherapeutic stress. In sum, these in vitro and in vivo findings demonstrate that PGRMC1 plays a prominent role in the growth and chemoresistance of human endometrial tumors.


Assuntos
Apoptose , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/prevenção & controle , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animais , Western Blotting , Neoplasias do Endométrio/patologia , Feminino , Humanos , Técnicas Imunoenzimáticas , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitose , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA