Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Clin Endocrinol Metab ; 107(3): 668-684, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34718610

RESUMO

CONTEXT: Genes causing familial forms of diabetes mellitus are only partially known. OBJECTIVE: We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. METHODS: Existing whole-exome sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the United States and Italy. Functional studies were carried out in vitro (transduced MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of 2 variants in the malate dehydrogenase 2 (MDH2) gene linked with hyperglycemia in 2 of the families. RESULTS: A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in 1 family from the United States. An infrequent MDH2 missense variant (p.Val160Met) also showed disease cosegregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio-a change known to affect insulin signaling and secretion. Stable expression of human wild-type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. CONCLUSION: Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.


Assuntos
Glicemia/metabolismo , Hiperglicemia/genética , Malato Desidrogenase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Glicemia/análise , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Mutação com Ganho de Função , Humanos , Hiperglicemia/sangue , Insulina/análise , Insulina/metabolismo , Secreção de Insulina/genética , Ilhotas Pancreáticas , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequenciamento do Exoma
2.
Cardiovasc Diabetol ; 18(1): 102, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409409

RESUMO

BACKGROUND: Myocardial infarction is the main mortality cause in patients with type 2 diabetes (T2DM). Endothelial dysfunction due to reduced bioavailability of nitric oxide (NO) is an early step of atherogenesis. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and it is metabolized by the enzymes dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2. The functional variant rs9267551 C, in the promoter region of DDAH2, has been linked to increased DDAH2 expression, and lower ADMA plasma levels, and was associated with lower risk of coronary artery disease in large-scale genome-wide association studies (GWAS) performed in the general population. However, it is unknown whether this association holds true in T2DM patients. To address this issue, we investigated whether rs9267551 is associated with risk of myocardial infarction in two cohorts of T2DM patients. METHODS: SNP rs9267551 was genotyped in 1839 White T2DM patients from the Catanzaro Study (CZ, n = 1060) and the Gargano Heart Study-cross sectional design (GHS, n = 779). Cases were patients with a previous myocardial infarction, controls were asymptomatic patients with neither previous myocardial ischemia nor signs of it at resting and during a maximal symptom limited stress electrocardiogram. RESULTS: Carriers of allele rs9267551 C showed a dose dependent reduction in the risk of myocardial infarction [(CZ = OR 0.380, 95% CI 0.175-0.823, p = 0.014), (GHS = 0.497, 0.267-0.923, p = 0.027), (Pooled = 0.458, 0.283-0.739, p = 0.001)] which remained significant after adjusting for sex, age, BMI, smoking, HbA1c, total cholesterol HDL, and triglyceride levels [(CZ = 0.307, 0.106-0.885, p = 0.029), (GHS = 0.512, 0.270-0.970, p = 0.040), (Pooled = 0.458, 0.266-0.787, p = 0.005)]. CONCLUSIONS: We found that rs9267551 polymorphism is significantly associated with myocardial infarction in T2DM patients of European ancestry from two independent cohorts. It is possible that in subjects carrying the protective C allele less ADMA accumulates in endothelial cells causing vascular protection as a consequence of higher nitric oxide availability.


Assuntos
Amidoidrolases/genética , Diabetes Mellitus Tipo 2/genética , Infarto do Miocárdio/genética , Polimorfismo de Nucleotídeo Único , Idoso , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/etnologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Incidência , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/etnologia , Fenótipo , Prevalência , Regiões Promotoras Genéticas , Medição de Risco , Fatores de Risco , População Branca/genética
3.
Eur J Paediatr Neurol ; 21(3): 587-590, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28254201

RESUMO

We present an atypical association of SCN2A epileptic encephalopathy with severe cortical dysplasia. SCN2A mutations are associated with epileptic syndromes from benign to extremely severe in absence of such macroscopic brain findings. Prenatal MRI (Magnetic Resonance Imaging) in a 32 weeks fetus, with US (Ultrasonography) diagnosis of isolated ventriculomegaly showed CNS (Central Nervous System) dysplasia characterized by lack of differentiation between cortical and subcortical layers, pachygyria and corpus callosum dysgenesis. Postnatal MRI confirmed the prenatal findings. On day 6 the baby presented a focal status epilepticus, partially controlled by phenobarbital, phenytoin, and levetiracetam. After three weeks a moderate improvement in seizure control has been achieved with carbamazepine. Exome sequencing detected a de novo heterozygous mutation in the SCN2A gene, encoding the αII-subunit of a sodium channel. The patient findings expand the phenotype spectrum of SCN2A mutations to epileptic encephalopathies with macroscopic brain developmental features.


Assuntos
Encefalopatias/tratamento farmacológico , Encefalopatias/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Convulsões/tratamento farmacológico , Convulsões/genética , Adulto , Encefalopatias/complicações , Carbamazepina/uso terapêutico , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/tratamento farmacológico , Malformações do Desenvolvimento Cortical/genética , Mutação , Neuroimagem , Fenótipo , Convulsões/complicações
4.
Endocrine ; 54(1): 38-46, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26956846

RESUMO

The high mortality risk of patients with type 2 diabetes mellitus may well be explained by the several comorbidities and/or complications. Also the intrinsic genetic component predisposing to diabetes might have a role in shaping the risk of diabetes-related mortality. Among type 2 diabetes mellitus SNPs, rs1801282 is of particular interest because (i) it is harbored by peroxisome proliferator-activated receptor-γ2 (PPARγ2), which is the target for thiazolidinediones which are used as antidiabetic drugs, decreasing all-cause mortality in type 2 diabetes mellitus, and (ii) it is associated with insulin resistance and related traits, risk factors for overall mortality in type 2 diabetes mellitus. We investigated the role of PPARγ2 P12A, according to a dominant model (PA + AA vs. PP individuals) on incident all-cause mortality in three cohorts of type 2 diabetes mellitus, comprising a total of 1672 patients (462 deaths) and then performed a meta-analysis of ours and all available published data. In the three cohorts pooled and analyzed together, no association between PPARγ2 P12A and all-cause mortality was observed (HR 1.02, 95 % CI 0.79-1.33). Similar results were observed after adjusting for age, sex, smoking habits, and BMI (HR 1.09, 95 % CI 0.83-1.43). In a meta-analysis of ours and all studies previously published (n = 3241 individuals; 666 events), no association was observed between PPARγ2 P12A and all-cause mortality (HR 1.07, 95 % CI 0.85-1.33). Results from our individual samples as well as from our meta-analysis suggest that the PPARγ2 P12A does not significantly affect all-cause mortality in patients with type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , PPAR gama/genética , Polimorfismo de Nucleotídeo Único , Diabetes Mellitus Tipo 2/mortalidade , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo
5.
Biochem Soc Trans ; 43(5): 1108-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517932

RESUMO

Insulin resistance is pathogenic for many prevalent disorders including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), polycystic ovary syndrome, non-alcoholic fatty liver disease, Alzheimer's and Parkinson's diseases and several cancers. Unravelling molecular abnormalities of insulin resistance may therefore pave the way for tackling such heavy weight on healthcare systems. This review will be focused on studies addressing the role of genetic variability of TRIB3, an inhibitor of insulin signalling at the AKT level on insulin resistance and several related abnormalities. Studies carried out in several cultured cells clearly report that the TRIB3 Q84R missense polymorphism, is a gain-of-function amino acid substitution, with the Arg(84) variant being a stronger inhibitor of insulin-mediated AKT activation as compared with the more frequent Gln(84) variant. Given the key role of AKT in modulating not only insulin signalling but also insulin secretion, it was not surprising that ß-cells and human pancreatic islets carrying the Arg(84) variant showed also impaired insulin secretion. Also, of note is that in human vein endothelial cells carrying the Arg(84) variant showed a reduced insulin-induced nitric oxide release, an established early atherosclerotic step. Accordingly with in vitro studies, in vivo studies indicate that TRIB3 Arg(84) is associated with insulin resistance, T2DM and several aspects of atherosclerosis, including overt CVD. In all, several data indicate that the TRIB3 Arg(84) variant plays a role on several aspects of glucose homoeostasis and atherosclerotic processes, thus unravelling new molecular pathogenic mechanisms of highly prevalent disorders such as T2DM and CVD.


Assuntos
Aterosclerose/genética , Proteínas de Ciclo Celular/genética , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Substituição de Aminoácidos , Aterosclerose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ativação Enzimática , Humanos , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Am J Hum Genet ; 97(1): 177-85, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26073777

RESUMO

Diabetes mellitus is a highly heterogeneous disorder encompassing several distinct forms with different clinical manifestations including a wide spectrum of age at onset. Despite many advances, the causal genetic defect remains unknown for many subtypes of the disease, including some of those forms with an apparent Mendelian mode of inheritance. Here we report two loss-of-function mutations (c.1655T>A [p.Leu552(∗)] and c.280G>A [p.Asp94Asn]) in the gene for the Adaptor Protein, Phosphotyrosine Interaction, PH domain, and leucine zipper containing 1 (APPL1) that were identified by means of whole-exome sequencing in two large families with a high prevalence of diabetes not due to mutations in known genes involved in maturity onset diabetes of the young (MODY). APPL1 binds to AKT2, a key molecule in the insulin signaling pathway, thereby enhancing insulin-induced AKT2 activation and downstream signaling leading to insulin action and secretion. Both mutations cause APPL1 loss of function. The p.Leu552(∗) alteration totally abolishes APPL1 protein expression in HepG2 transfected cells and the p.Asp94Asn alteration causes significant reduction in the enhancement of the insulin-stimulated AKT2 and GSK3ß phosphorylation that is observed after wild-type APPL1 transfection. These findings-linking APPL1 mutations to familial forms of diabetes-reaffirm the critical role of APPL1 in glucose homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adulto , Idoso , Feminino , Células Hep G2 , Humanos , Immunoblotting , Insulina/metabolismo , Itália , Masculino , Pessoa de Meia-Idade , Linhagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estados Unidos
7.
Am J Hum Genet ; 96(5): 816-25, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25865493

RESUMO

Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development.


Assuntos
Catarata/genética , Surdez/genética , Quinase 3 da Glicogênio Sintase/genética , Deficiência Intelectual/genética , Proteínas Proto-Oncogênicas c-maf/genética , Catarata/patologia , Síndrome de Down/genética , Síndrome de Down/patologia , Humanos , Deficiência Intelectual/patologia , Mutação , Fenótipo , Fosforilação , Convulsões/genética , Convulsões/patologia
8.
PLoS One ; 8(6): e64729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23755138

RESUMO

BACKGROUND: High serum resistin has been associated with increased risk of cardiovascular disease in the general population, Only sparse and conflicting results, limited to Asian individuals, have been reported, so far, in type 2 diabetes. We studied the role of serum resistin on coronary artery disease, major cardiovascular events and all-cause mortality in type 2 diabetes. METHODS: We tested the association of circulating resistin concentrations with coronary artery disease, major cardiovascular events (cardiovascular death, non-fatal myocardial infarction and non-fatal stroke) and all-cause mortality in 2,313 diabetic patients of European ancestry from two cross-sectional and two prospective studies. In addition, the expression of resistin gene (RETN) was measured in blood cells of 68 diabetic patients and correlated with their serum resistin levels. RESULTS: In a model comprising age, sex, smoking habits, BMI, HbA1c, and insulin, antihypertensive and antidyslipidemic therapies, serum resistin was associated with coronary artery disease in both cross-sectional studies: OR (95%CI) per SD increment = 1.35 (1.10-1.64) and 1.99 (1.55-2.55). Additionally, serum resistin predicted incident major cardiovascular events (HR per SD increment = 1.31; 1.10-1.56) and all-cause mortality (HR per SD increment = 1.16; 1.06-1.26). Adjusting also for fibrinogen levels affected the association with coronary artery disease and incident cardiovascular events, but not that with all cause-mortality. Finally, serum resistin was positively correlated with RETN mRNA expression (rho = 0.343). CONCLUSIONS: This is the first study showing that high serum resistin (a likely consequence, at least partly, of increased RETN expression) is a risk factor for cardiovascular disease and all-cause mortality in diabetic patients of European ancestry.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/mortalidade , Resistina/sangue , Doenças Cardiovasculares/complicações , Estudos de Casos e Controles , Intervalos de Confiança , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Estudos Prospectivos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resistina/genética , Análise de Sobrevida
9.
PLoS One ; 8(7): e70159, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894607

RESUMO

Impaired insulin action plays a major role in the pathogenesis of type 2 diabetes, a chronic metabolic disorder which imposes a tremendous burden to morbidity and mortality worldwide. Unraveling the molecular mechanisms underlying insulin resistance would improve setting up preventive and treatment strategies of type 2 diabetes. Down-regulation of GALNT2, an UDPN-acetyl-alpha-D-galactosamine polypeptideN-acetylgalactosaminyltransferase-2 (ppGalNAc-T2), causes impaired insulin signaling and action in cultured human liver cells. In addition, GALNT2 mRNA levels are down-regulated in liver of spontaneously insulin resistant, diabetic Goto-Kakizaki rats. To investigate the role of GALNT2 in human hyperglycemia, we measured GALNT2 mRNA expression levels in peripheral whole blood cells of 84 non-obese and 46 obese non-diabetic individuals as well as of 98 obese patients with type 2 diabetes. We also measured GALNT2 mRNA expression in human U937 cells cultured under different glucose concentrations. In vivo studies indicated that GALNT2 mRNA levels were significantly reduced from non obese control to obese non diabetic and to obese diabetic individuals (p<0.001). In vitro studies showed that GALNT2 mRNA levels was reduced in U937 cells exposed to high glucose concentrations (i.e. 25 mmol/l glucose) as compared to cells exposed to low glucose concentration (i.e. 5.5 mmol/l glucose +19.5 mmol/l mannitol). In conclusion, our data indicate that GALNT2 is down-regulated in patients with type 2 diabetes and suggest that this association is, at least partly, secondary to hyperglycemia. Further studies are needed to understand whether GALNT2 down-regulation plays a pathogenic role in maintaining and/or aggravating the metabolic abnormalities of diabetic milieu.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Regulação Enzimológica da Expressão Gênica , Hiperglicemia/enzimologia , Hiperglicemia/genética , N-Acetilgalactosaminiltransferases/genética , Adulto , Glicemia/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Hiperglicemia/sangue , Hiperglicemia/complicações , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
10.
Endocr Rev ; 33(4): 526-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22577090

RESUMO

Insulin signaling plays a physiological role in traditional insulin target tissues controlling glucose homeostasis as well as in pancreatic ß-cells and in the endothelium. Insulin signaling abnormalities may, therefore, be pathogenic for insulin resistance, impaired insulin secretion, endothelial dysfunction, and eventually, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Tribbles homolog 3 (TRIB3) is a 45-kDa pseudokinase binding to and inhibiting Akt, a key mediator of insulin signaling. Akt-mediated effects of TRIB3 in the liver, pancreatic ß-cells, and skeletal muscle result in impaired glucose homeostasis. TRIB3 effects are also modulated by its direct interaction with other signaling molecules. In humans, TRIB3 overactivity, due to TRIB3 overexpression or to Q84R genetic polymorphism, with R84 being a gain-of-function variant, may be involved in shaping the risk of insulin resistance, T2DM, and cardiovascular disease. TRIB3 overexpression has been observed in the liver, adipose tissue, skeletal muscle, and pancreatic ß-cells of individuals with insulin resistance and/or T2DM. The R84 variant has also proved to be associated with insulin resistance, T2DM, and cardiovascular disease. TRIB3 direct effects on the endothelium might also play a role in increasing the risk of atherosclerosis, as indicated by studies on human endothelial cells carrying the R84 variant that are dysfunctional in terms of Akt activation, NO production, and other proatherogenic changes. In conclusion, studies on TRIB3 have unraveled new molecular mechanisms underlying metabolic and cardiovascular abnormalities. Additional investigations are needed to verify whether such acquired knowledge will be relevant for improving care delivery to patients with metabolic and cardiovascular alterations.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Insulina/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Proteínas de Ciclo Celular/genética , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo , Homeostase , Humanos , Estrutura Molecular , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética
11.
PLoS One ; 6(5): e19462, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21573217

RESUMO

The aim of this study was to deeper investigate the mechanisms through which ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1 cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6 skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation (HepG2, L6, INS1E), Akt-Ser(473), ERK1/2-Thr(202)/Tyr(204) and GSK3-beta Ser(9) phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and 2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA (L6), insulin secretion and caspase-3 activation (INS1E) were also investigated. Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K (20%, 52% and 11% reduction vs. untransfected cells) and twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%). Similar data were obtained with Akt-Ser(473), ERK1/2-Thr(202)/Tyr(204) and GSK3-beta Ser(9) in HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%). Insulin-induced glucose uptake in untransfected L6 (60% increase over basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly reduced in L6-K and twice as much in L6-Q (13% and 25% reduction vs. untransfected cells). Glucose-induced insulin secretion was 60% reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in isolated human islets from homozygous QQ donors as compared to those from KK and KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121 variant is operating, affects insulin signaling and glucose metabolism in skeletal muscle- and liver-cells and both function and survival of insulin secreting beta-cells, thus representing a strong pathogenic factor predisposing to insulin resistance, defective insulin secretion and glucose metabolism abnormalities.


Assuntos
Insulina/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Linhagem Celular , Genótipo , Glucose/farmacologia , Glibureto/farmacologia , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Diester Fosfórico Hidrolases/genética , Fosforilação/efeitos dos fármacos , Polimorfismo Genético/genética , Pirofosfatases/genética
12.
Cardiovasc Res ; 89(1): 184-92, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20693163

RESUMO

AIMS: TRIB3, a mammalian tribbles homologue, affects insulin signalling and action by inhibiting Akt phosphorylation. A TRIB3 Q84R gain-of-function polymorphism has been associated with insulin resistance both in vitro and in vivo and with several atherosclerotic phenotypes, including increased carotid intima-media thickness (IMT). We wanted to replicate this latter association and, if so, to get deeper insights about the molecular mechanisms underlying the role of the TRIB3 Q84R polymorphism in atherosclerosis. METHODS AND RESULTS: in 430 Caucasians of European ancestry, carotid IMT was increased in QR (n = 116) and RR (n = 15) when compared with QQ (n = 299) subjects (P= 0.009), thus replicating similar data recently obtained among Asians. In human umbilical vein endothelial cells (HUVECs) naturally carrying the QQ genotype, 24 h insulin stimulation increased monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression, and mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK activation. Conversely, QR- and RR-HUVECs had increased unstimulated monocyte adhesion, VCAM-1 and ICAM-1 expression, and MEK-MAPK activation which did not increase further upon insulin stimulation. In addition, QQ-, QR-, and RR-HUVECs showed similar basal Akt phosphorylation and nitric oxide synthase activity which, however, were significantly increased by insulin only in QQ cells. CONCLUSION: the TRIB3 R4 variant is associated with increased carotid IMT also in Caucasians, thus replicating previous data obtained in Asians. In addition, in HUVECs, this variant is associated with unbalanced insulin signalling. This abnormality may favour vasoreactivity, intima-media thickening, and plaque formation and may, therefore, underlie the deleterious role exerted by the variant on the susceptibility to atherosclerosis.


Assuntos
Artéria Carótida Primitiva/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Adulto , Idoso , Substituição de Aminoácidos , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Adesão Celular/genética , Adesão Celular/fisiologia , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Variação Genética , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Túnica Íntima/patologia , Túnica Média/patologia , Células U937 , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adulto Jovem
13.
Arterioscler Thromb Vasc Biol ; 28(7): 1355-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18436806

RESUMO

BACKGROUND: In the endothelium, insulin promotes nitric oxide (NO) production, through the insulin receptor/IRS-1/PI3-Kinase/Akt/eNOS signaling pathway. An inhibitor of insulin action, TRIB3, has recently been identified which affects insulin action by binding to and inhibiting Akt phosphorylation. We have recently described a Q84R gain-of-function polymorphism of TRIB3 with the R84 variant being associated with insulin resistance and an earlier age at myocardial infarction. METHODS AND RESULTS: To investigate the TRIB3 R84 variant impact on endothelial insulin action, we cultured human umbilical vein endothelial cells (HUVECs) naturally carrying different TRIB3 genotypes (QQ-, QR-, or RR-HUVECs). TRIB3 inhibitory activity on insulin-stimulated Akt phosphorylation and the amount of protein which was coimmunoprecipitable with Akt were significantly greater in QR- and RR- as compared to QQ- HUVECs. After insulin stimulation, Akt and eNOS activation as well as NO production were markedly decreased in QR- and RR- as compared to QQ-HUVECs. TRIB3 molecular modeling analysis provided insights into the structural changes related to the polymorphisms potentially determining differences in protein-protein interaction with Akt. CONCLUSIONS: Our data demonstrate that the TRIB3 R84 variant impairs insulin signaling and NO production in human endothelial cells. This finding provides a plausible biological background for the deleterious role of TRIB3 R84 on genetic susceptibility to coronary artery disease.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Células Endoteliais/metabolismo , Resistência à Insulina , Insulina/metabolismo , Óxido Nítrico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células Cultivadas , GMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Ativação Enzimática , Genótipo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina/genética , Modelos Moleculares , Mutação , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Receptor de Insulina/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transdução de Sinais/genética
14.
Diabetes ; 54(9): 2807-11, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16123373

RESUMO

Insulin resistance plays a major role in dyslipidemia, cardiovascular disease, and type 2 diabetes. TRB3, a mammalian tribbles homolog, whose chromosomal region 20p13-p12 has been linked to human type 2 diabetes, impairs insulin signaling through the inhibition of Akt phosphorylation and is overexpressed in murine models of insulin resistance. We here report that the prevalent TRB3 missense Q84R polymorphism is significantly (P < 0.05) associated with several insulin resistance-related abnormalities in two independent cohorts (n = 178 and n = 605) of nondiabetic individuals and with the presence of a cluster of insulin resistance-related cardiovascular risk factors in 716 type 2 diabetic patients (OR 3.1 [95% CI 1.2-8.2], P = 0.02). In 100 additional type 2 diabetic patients who suffered from myocardial ischemia, age at myocardial ischemia was progressively and significantly (P = 0.03) reduced from Q84Q to Q84R to R84R individuals. To test the functional role of TRB3 variants, either Q84 or R84 TRB3 full-length cDNAs were transfected in human HepG2 hepatoma cell lines. As compared with control HepG2 cells, insulin-induced Ser473-Akt phosphorylation was reduced by 22% in Q84- (P < 0.05 vs. control cells) and by 45% in R84-transfected cells (P < 0.05 vs. Q84 transfected and P < 0.01 vs. control cells). These data provide the first evidence that TRB3 gene plays a role in human insulin resistance and related clinical outcomes.


Assuntos
Doenças Cardiovasculares/genética , Proteínas de Ciclo Celular/genética , Predisposição Genética para Doença , Resistência à Insulina/genética , Polimorfismo Genético , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Idoso , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Fatores de Risco , População Branca
15.
Hum Mutat ; 21(4): 450, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12655570

RESUMO

Mutations in the ATM gene are responsible for the autosomal recessive syndrome Ataxia Telangiectasia (AT). In a group of 26 classical AT Italian patients studied by protein truncation test (PTT), we identified six new mutations, never reported so far. Mutations -spread over the entire ATM coding sequence with not clear "hot-spot"- are four frameshifts (2192_2193insA, 3110delC, 7150delA, 8368delA), one splice site alteration (8850G>T, causing exon 63 skipping) and one nonsense change (6913C>T, Q2305X). The identification of ATM gene mutations is important for understanding the molecular basis of the disease, and is essential for diagnosis and genetic counseling.


Assuntos
Ataxia Telangiectasia/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Linhagem Celular , Códon sem Sentido/genética , Proteínas de Ligação a DNA , Mutação da Fase de Leitura , Testes Genéticos/métodos , Humanos , Itália , Linfócitos/química , Linfócitos/metabolismo , Linfócitos/patologia , Sítios de Splice de RNA/genética , Sistema de Registros , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA