Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrition ; 124: 112450, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38669829

RESUMO

OBJECTIVE: It has been suggested that dysbiosis of the gut microbiota is associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS), and that improper diet can aggravate these changes. This study thus aimed to investigate the effects of a high-fat/high-fructose (HF/HFr) diet on the gut microbial community and their metabolites in prepubertal female mice with letrozole (LET)-induced PCOS. We also tested the correlations between the relative abundance of microbial taxa and selected PCOS parameters. RESEARCH METHODS & PROCEDURES: Thirty-two C57BL/6 mice were randomly divided into four groups (n = 8) and implanted with LET or a placebo, with simultaneous administration of a HF/HFr diet or standard diet (StD) for 5 wk. The blood and intestinal contents were collected after the sacrifice. RESULTS: Placebo + HF/HFr and LET + HF/HFr had significantly higher microbial alpha diversity than either group fed StD. The LET-implanted mice fed StD had a significantly higher abundance of Prevotellaceae_UCG-001 than the placebo mice fed StD. Both groups fed the HF/HFr diet had significantly lower fecal levels of short-chain fatty acids than the placebo mice fed StD, while the LET + HF/HFr animals had significantly higher concentrations of lipopolysaccharides in blood serum than either the placebo or LET mice fed StD. Opposite correlations were observed between Turicibacter and Lactobacillus and the lipid profile, CONCLUSION: HF/HFr diet had a much stronger effect on the composition of the intestinal microbiota of prepubertal mice than LET itself.


Assuntos
Dieta Hiperlipídica , Modelos Animais de Doenças , Frutose , Microbioma Gastrointestinal , Letrozol , Camundongos Endogâmicos C57BL , Síndrome do Ovário Policístico , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Síndrome do Ovário Policístico/microbiologia , Dieta Hiperlipídica/efeitos adversos , Camundongos , Frutose/efeitos adversos , Fezes/microbiologia , Disbiose/etiologia , Disbiose/microbiologia , Ácidos Graxos Voláteis/metabolismo
2.
Exp Eye Res ; 240: 109806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272381

RESUMO

Primary open-angle glaucoma (POAG) is the most common type of glaucoma leading to blindness. The search for ways to prevent/treat this entity is one of the main challenges of today's ophthalmology. One of such solution seems to be biologically active substances of natural origin, such as genistein (GEN), which can affect the function of isolated trabecular meshwork by the inhibition of protein tyrosine kinase. However, the role of GEN in viability as well as myofibroblastic transformation in human trabecular meshwork cells stimulated by TGF-ß is unknown. Using human trabecular meshwork cells (HTMCs) we investigated the effect of genistein on cell viability and myofibroblastic transformation stimulated by TGF-ß1 and TGF-ß2. Using Real-Time PCR, western blot and immunofluorescence we determined the effect on the expression changes of αSMA, TIMP1, collagen 1 and 3 at mRNA and protein level. We found that genistein increases the viability of HTMCs (1, 2, 3 µg/ml; P < 0.05 and 4, 5, 10, 15, 20 µg/ml; P < 0.01). Moreover, we found that addition of 10, 15 and 20 µg/ml is able to prevent myofibroblastic transformation of HTMCs by decreasing αSMA, TIMP1, collagen 1 and 3 mRNA and protein expression (P < 0.01). Based on the obtained results, we can conclude that genistein is a potential factor that can prevent the myofibroblastic transformation of HTMCs accompanying glaucoma. Describing GEN influence on myofibroblastic transformation processes in HTMC allows us to conclude that it can be considered a potential therapeutic agent or a substance supporting treatment in patients with glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Genisteína/farmacologia , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/prevenção & controle , Glaucoma de Ângulo Aberto/genética , Malha Trabecular/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Glaucoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Colágeno/metabolismo
3.
Biol Reprod ; 109(5): 654-668, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37665248

RESUMO

Kisspeptin (KP, encoded by Kiss1, binding to the Gpr54 receptor) is a neuropeptide conveying information on the metabolic status to the hypothalamic-pituitary-gonadal axis. KP acts together with dynorphin A (encoded by Pdyn) and neurokinin B (encoded by Tac2) to regulate reproduction. KP is crucial for the onset of puberty and is under the control of sirtuin (encoded by Sirt1). We hypothesize that the maternal cafeteria (CAF) diet has adverse effects on the offspring's hormonal, metabolic, and reproductive functions due to sex-specific alterations in the expression of Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 in the hypothalamus, and Kiss1, Gpr54, and Sirt1 in the liver. Rats were fed a CAF diet before pregnancy, during pregnancy, and during lactation. The vaginal opening was monitored. Offspring were sacrificed in three age points: PND 30, PND 35, and PND 60 (females) and PND 40, PND 45, and PND 60 (males). Their metabolic and hormonal status was assessed. mRNA for Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 were measured by real-time PCR in the hypothalamus and/or livers. We found that CAF offspring had lower weight and altered body composition; increased cholesterol and triglyceride levels, sex-specific changes in glucose and insulin levels; sex-dependent changes in Sirt1/Kiss1 mRNA ratio in the hypothalamus; sex-specific alterations in Kiss1 and Sirt1 mRNA in the liver with more diversity in males; and a delayed puberty onset in females. We concluded that the mother's CAF diet leads to sex-specific alterations in metabolic and reproductive outcomes via Kiss1/Gpr54 and Sirt1 systems in offspring.


Assuntos
Kisspeptinas , Sirtuína 1 , Gravidez , Feminino , Masculino , Ratos , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Maturidade Sexual/fisiologia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Dieta , Metaboloma , RNA Mensageiro/metabolismo
4.
Nutrients ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745209

RESUMO

This study aims to investigate the effects of a high-fat, high-fructose (HF/HFr) diet on metabolic/endocrine dysregulations associated with letrozole (LET)-induced Polycystic Ovarian Syndrome (PCOS) in prepubertal female mice. Thirty-two prepubertal C57BL/6 mice were randomly divided into four groups of eight and implanted with LET or a placebo, with simultaneous administration of an HF/HFr/standard diet for five weeks. After sacrifice, the liver and blood were collected for selected biochemical analyses. The ovaries were taken for histopathological examination. The LET+HF/HFr group gained significantly more weight than the LET-treated mice. Both the LET+HF/HFr and the placebo-treated mice on the HF/HFr diet developed polycystic ovaries. Moreover the LET+HF/HFr group had significantly elevated testosterone levels, worsened lipid profile and indices of insulin sensitivity. In turn, the HF/HFr diet alone led to similar changes in the LET-treated group, except for the indices of insulin sensitivity. Hepatic steatosis also occurred in both HF/HFr groups. The LET-treated group did not develop endocrine or metabolic abnormalities, but polycystic ovaries were seen. Since the HF/HFr diet can cause substantial metabolic and reproductive dysregulation in both LET-treated and placebo mice, food items rich in simple sugar-particularly fructose-and saturated fat, which have the potential to lead to PCOS progression, should be eliminated from the diet of young females.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Animais , Feminino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Frutose , Letrozol/efeitos adversos , Camundongos Endogâmicos C57BL , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/metabolismo
5.
BMC Vet Res ; 17(1): 359, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34798894

RESUMO

BACKGROUND: This study aimed to evaluate spexin as a novel blood marker and to describe the relationship of this peptide with selected biochemical metabolites measured during the transition period in dairy cows. Additionally, mRNA expression of the spexin gene as well as spexin receptors - galanin receptor type 2 and galanin receptor type 3, was investigated in several bovine tissues. Blood samples were collected at weekly intervals starting at 21 days before the estimated parturition day until 21 days in milk to determine concentrations of spexin, nonesterified fatty acids, ß-hydroxybutyrate acid, total and active ghrelin, progesterone, glucose, insulin, IGF-I, triglycerides, cholesterol, leptin, corticosterone and 17-ß-estradiol as well as the activity of aspartate transaminase, alkaline phosphatase and gamma-glutamyl transferase. RESULTS: Spexin concentration decreased from 21 d before parturition to calving day and next it rose during the first 14 d of lactation. The lowest concentration of spexin was recorded on the calving day and it differed from the mean level of this peptide before parturition as well as postpartum. Moreover, differences were observed between mean spexin concentrations before and after calving. Spexin levels were moderately negatively correlated with NEFA (r = - 0.39) and total ghrelin contents (r = - 0.41), weakly correlated with BHBA (r = - 0.35) while they showed a moderate positive relationship with progesterone concentrations (r = 0.42). Moreover, we detected that mRNA expression of GALR2, GALR3 and SPX is present in various bovine tissues (kidney, bowel, rumen, spinal cord, lung, skeletal muscle, liver, heart, fat and spleen). CONCLUSION: A negative correlation between spexin concentration and NEFA, BHBA and total ghrelin contents as well as a positive relationship with levels of progesterone, metabolites and hormones, which are key players in the dairy cow transition period, may confirm an important function of this peptide in metabolism regulation. Thus measurement of spexin concentration could provide useful supplementary information for dairy cow herd health monitoring.


Assuntos
Bovinos/sangue , Bovinos/fisiologia , Hormônios Peptídicos/sangue , Animais , Biomarcadores/sangue , Bovinos/metabolismo , Indústria de Laticínios , Feminino , Hormônios/sangue , Lactação/metabolismo , Período Pós-Parto/sangue , Período Pós-Parto/metabolismo , Gravidez/metabolismo
6.
Mol Cell Endocrinol ; 536: 111420, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34384849

RESUMO

Spexin (SPX) is a 14 aa peptide discovered in 2007 using bioinformatics methods. SPX inhibits food intake and regulates lipid, and carbohydrate metabolism. Here, we evaluate the ability of SPX at improving metabolic control and liver function in obese and type 2 diabetic animals. The effects of 30 days SPX treatment of mice with experimentally induced obesity (DIO) or type 2 diabetes (T2DM) on serum glucose and lipid levels, insulin sensitivity and hormonal profile (insulin, glucagon, adiponectin, leptin, TNF alpha, IL-6 and IL-1ß) are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. We report that SPX decreases body weight in healthy and DIO mice, and reduces lipid content in all three animal groups. SPX improves insulin sensitivity in DIO and T2DM animals. In addition, SPX modulates hormonal and metabolic profile by regulating the concentration of adiponectin (concentration increase) and leptin (concentration decrease) in the serum blood of DIO and T2DM mice. Lastly, SPX decreases lipid content as well as IL-6 and TNF-α protein levels in liver of DIO and T2DM mice, and reduces IL-6 and TNF-alpha concentrations in the serum derived from T2DM mice. Based on our results, we conclude that SPX could be involved in the development of obesity and type 2 diabetes mellitus and it can be further evaluated as a potential target for therapy of DIO and T2DM.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Obesidade/tratamento farmacológico , Hormônios Peptídicos/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Glicogênio , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Testes de Função Hepática , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo
7.
Genes (Basel) ; 12(6)2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199277

RESUMO

Adropin is a peptide hormone which modulates energy homeostasis and metabolism. In animals with diet-induced obesity, adropin attenuates adiposity and improves lipid and glucose homeostasis. Adropin promotes the proliferation of rodent white preadipocytes and suppresses their differentiation into adipocytes. By contrast, the effects of adropin on mature white adipocytes are unknown. Therefore, we aimed to evaluate the effects of adropin on lipolysis, lipogenesis and glucose uptake in white rodent adipocytes. We assessed the effects of adropin on the mRNA expression of adiponectin, resistin and visfatin. White preadipocytes were isolated from male Wistar rats. Differentiated 3T3-L1 cells were used as a surrogate model of white adipocytes. Lipolysis was measured by the evaluation of glycerol and free fatty acid secretion using colorimetric kits. The effects of adropin on lipogenesis and glucose uptake were measured using radioactive-labelled glucose. The expression of adipokine mRNA was studied using real-time PCR. Our results show that adropin slightly promotes lipolysis in rat adipocytes and 3T3-L1 cells. Adropin suppresses lipogenesis in rat adipocytes without influencing glucose uptake. In addition, adropin stimulates adiponectin mRNA expression and suppresses the expression of resistin and visfatin. These results indicate that adropin may be involved in controlling lipid metabolism and adipokine expression in white rodent adipocytes.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Adipocinas/metabolismo , Glucose/metabolismo , Lipogênese , Lipólise , Peptídeos/farmacologia , Células 3T3-L1 , Adipócitos Brancos/metabolismo , Adipocinas/genética , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Masculino , Camundongos , Peptídeos/química , Ratos , Ratos Wistar
8.
Genes (Basel) ; 12(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067710

RESUMO

Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.


Assuntos
Tecido Adiposo/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Homeostase , Humanos , Hormônios Peptídicos/química , Hormônios Peptídicos/genética
9.
Genes (Basel) ; 13(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052420

RESUMO

SPX (spexin) and its receptors GalR2 and GalR3 (galanin receptor subtype 2 and galanin receptor subtype 3) play an important role in the regulation of lipid and carbohydrate metabolism in human and animal fat tissue. However, little is still known about the role of this peptide in the metabolism of muscle. The aim of this study was to determine the impact of SPX on the metabolism, proliferation and differentiation of the skeletal muscle cell line C2C12. Moreover, we determined the effect of exercise on the SPX transduction pathway in mice skeletal muscle. We found that increased SPX, acting via GalR2 and GalR3 receptors, and ERK1/2 phosphorylation stimulated the proliferation of C2C12 cells (p < 0.01). We also noted that SPX stimulated the differentiation of C2C12 by increasing mRNA and protein levels of differentiation markers Myh, myogenin and MyoD (p < 0.01). SPX consequently promoted myoblast fusion into the myotubule (p < 0.01). Moreover, we found that, in the first stage (after 2 days) of myocyte differentiation, GalR2 and GalR3 were involved, whereas in the last stage (day six), the effect of SPX was mediated by the GalR3 isoform. We also noted that exercise stimulated SPX and GalR2 expression in mice skeletal muscle as well as an increase in SPX concentration in blood serum. These new insights may contribute to a better understanding of the role of SPX in the metabolism of skeletal muscle.


Assuntos
Diferenciação Celular , Proliferação de Células , Músculo Esquelético/citologia , Hormônios Peptídicos/metabolismo , Condicionamento Físico Animal , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Hormônios Peptídicos/genética , Fosforilação , Receptor Tipo 1 de Galanina/genética , Receptor Tipo 2 de Galanina/genética
10.
Neuroscience ; 451: 184-196, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33065232

RESUMO

KNDy neurons co-expressing kisspeptin (KP), neurokinin B (NKB) and dynorphin A (DYN A) in the arcuate nucleus of the hypothalamus (ARC) are key regulators of reproduction. Their activity is influenced by metabolic and hormonal signals. Previously, we have shown that orchidectomy alters the KP-, NKB-, and DYN A-immunoreactivity in the high-fat diet-induced (HFD) obesity and diabetes type 2 (DM2) models. Considering the potential sex difference in the response of KNDy neurons, we have hypothesized that ovariectomy (OVX) and post-ovariectomy replacement with estradiol (OVX+E2) or estradiol and progesterone (OVX+E2+P4) will also affect these neurons in HFD and DM2 females. Thus, each of these treatment protocols were employed for control, HFD, and DM2 groups of rats leading to nine experimental conditions within which we have determined the number of KP-, NKB-, or DYN-immunoreactive (-ir) neurons and assessed the metabolic and hormonal profiles of the animals. Accordingly: (1) no effects of group and surgery were observed on the number of KP-ir neurons; (2) the overall number of NKB-ir neurons was higher in the OVX+E2+P4 and OVX+E2 animals compared to OVX; (3) overall, the number of DYN A-ir neurons was higher in DM2 vs. control group, and surgery had an effect on the number of DYN A-ir neurons; (4) the metabolic and hormonal profiles were altered in HFD and DM2 animals compared to controls. Current data together with our previously published results indicate sex-specific differences in the response of KNDy neurons to DM2.


Assuntos
Núcleo Arqueado do Hipotálamo , Diabetes Mellitus Experimental , Dinorfinas , Hormônios Esteroides Gonadais , Kisspeptinas , Neurocinina B , Neurônios , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Neurocinina B/metabolismo , Neurônios/metabolismo , Obesidade , Ovariectomia , Ratos
11.
Gen Comp Endocrinol ; 299: 113615, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950584

RESUMO

The present study aimed to characterize the role of spexin (SPX) in maintaining glucose and lipid homeostasis in vivo in rats with diet-induced obesity. The in vitro effect of spexin on metabolic and endocrine functions of adipocytes isolated from obese rats was also investigated. The in vivo experiment was conducted on rats with diet-induced obesity and administered with SPX for 7 days. Lipid and carbohydrate parameters, liver markers, and hormonal profile were measured. In in vitro studies, adipocytes isolated from obese rats were used. The effect of SPX on lipolysis, lipogenesis, and leptin secretion from fat cells was assessed. The results showed that short-term administration of SPX causes weight loss, increases insulin sensitivity, and improves the metabolic state of obese rats. The in vitro experiments showed that spexin and its receptors, namely galanin receptor 2 (GALR2) and galanin receptor 3 (GALR3), were expressed in various fat depots and in adipocytes from obese rats. We also found that the addition of spexin increased the basal and isoproterenol-stimulated lipolysis and reduced the basal and insulin-stimulated lipogenesis in adipocytes isolated from obese rats. Molecular analysis showed that SPX activated hormone-sensitive lipase (HSL) phosphorylation and upregulated perilipin and HSL mRNA expression. These results suggest that SPX regulates metabolism of obese rats by affecting lipolysis and lipogenesis in adipocytes. Moreover, the present study for the first time demonstrates that SPX modulates leptin synthesis and secretion from isolated adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Glucose/metabolismo , Insulina/metabolismo , Lipogênese , Lipólise , Obesidade/prevenção & controle , Hormônios Peptídicos/administração & dosagem , Adipócitos/metabolismo , Animais , Técnicas In Vitro , Resistência à Insulina , Lipídeos/análise , Masculino , Obesidade/metabolismo , Obesidade/patologia , Fosforilação , Ratos , Ratos Wistar
12.
Endocrine ; 63(3): 513-519, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30267353

RESUMO

Spexin is an interesting peptide, which may play an important role in the regulation of the metabolic homeostasis of an organism. Current knowledge on spexin expression, secretion, and influence on tissues and endocrine glands is very limited. We investigated spexin localization in the endocrine pancreas and measured its in vitro secretion from isolated pancreatic islets at various glucose concentrations, simultaneously monitoring insulin release. Also, gene expression for spexin and insulin was estimated. We found the presence of spexin inside beta cells and an increase in its release from islets after a short term and decrease after a long term following glucose administration. Finally, negative feedback loops between spexin and insulin were found, indicating the presence of multilateral relationships between glucose, insulin, and spexin inside pancreatic islets.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Glucose , Técnicas In Vitro , Suínos
13.
J Neuroendocrinol ; 30(11): e12651, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311288

RESUMO

Apart from the primary metabolic symptoms of obesity and/or diabetes, there are numerous secondary problems, including disruptions of the reproductive system. The KNDy neurones, which express kisspeptin, neurokinin B and dynorphin A and are located in the arcuate nucleus of the hypothalamus (ARC), are important regulators of reproduction. Their functions are highly influenced by metabolic and hormonal status. We have previously shown that, in male rats with experimentally-induced diabetes type 2 (but not with high-fat diet-induced obesity), there are alterations in the number of these cells. In the present study, we hypothesised that a high-fat diet (HFD) and/or diabetes type 2 (DM2) in female rats affect the oestrous cycle, hormonal profiles and the number of kisspeptin-immunoreactive, neurokinin B-immunoreactive and/or dynorphin A-immunoreactive neurones in the ARC. Rats were assigned to one of three groups: a control group fed a regular chow diet, a high-fat diet group (HFD) and a diabetic group (DM2), with both of the latter two groups receiving a high calorie diet (50% of energy from lard). The third group was additionally treated with streptozotocin to induce DM2. Their oestrous cycles was monitored and their metabolic and hormonal status were assessed. We found that HFD and DM2 female rats, despite having significant alterations in their metabolic and hormonal profiles, as well as disruptions of the oestrous cycle, showed no changes in the number of the kisspeptin-immunoreactive, neurokinin B-immunoreactive and/or dynorphin A-immunoreactive neurones in the ARC. However, slight differences in the rostrocaudal distribution of these neurones among groups were reported. In conclusion, the data from the present study, together with our previously published results in males, indicate sex differences in the response of KNDy neurones to DM2 but not to HFD conditions.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ciclo Estral/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Dinorfinas/metabolismo , Feminino , Insulina/metabolismo , Kisspeptinas/metabolismo , Leptina/metabolismo , Neurocinina B/metabolismo , Ratos Wistar
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(10): 1228-1236, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305242

RESUMO

Spexin (SPX, NPQ) is a novel peptide involved in the regulation of energy metabolism. SPX inhibits food intake and reduces body weight. In obese humans, SPX is the most down-regulated gene in fat. Therefore, SPX might be involved in the regulation of lipid metabolism. Here, we study the effects of SPX on lipolysis, lipogenesis, glucose uptake, adipogenesis, cell proliferation and survival in isolated human adipocytes or murine 3T3-L1 cells. SPX and its receptors, GALR2 and GALR3, are present at mRNA and protein levels in murine 3T3-L1 cells and human adipocytes. SPX inhibits adipogenesis and down-regulates mRNA expression of proadipogenic genes such as Pparγ, C/ebpα, C/ebpß and Fabp4. SPX stimulates lipolysis by increasing the phosphorylation of hormone sensitive lipase (HSL). Simultaneously, SPX inhibits lipogenesis and glucose uptake in human adipocytes and murine 3T3-L1 cells. SPX has no effect on murine 3T3-L1 cell proliferation and viability. Moreover, our research showed that the SPX effect on adipocytes metabolism is mediated via GALR2 and GALR3 receptors. SPX is a novel regulator of lipid metabolism in murine 3T3-L1 and human adipocytes.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Hormônios Peptídicos/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucose/metabolismo , Humanos , Insulina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Galanina/genética , Receptores de Galanina/metabolismo
15.
Endocrine ; 56(3): 538-550, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28477305

RESUMO

PURPOSE: Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). METHODS: The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. RESULTS: Obestatin reduced body weight and decreased serum glucose, fructosamine, and ß-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. CONCLUSION: Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Grelina/uso terapêutico , Resistência à Insulina/fisiologia , Fígado/efeitos dos fármacos , Ácido 3-Hidroxibutírico/sangue , Adenilato Quinase/metabolismo , Animais , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Frutosamina/sangue , Grelina/farmacologia , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Resultado do Tratamento , Triglicerídeos/metabolismo
16.
Endocrine ; 56(1): 54-64, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28194651

RESUMO

INTRODUCTION: Kisspeptin, which is encoded by the KISS1 gene and acts via GPR54, plays a role in the regulation of reproductive functions. Expression of KISS1 and GRPR54 has been found in peripheral tissues, including adipose tissue, and was shown to be influenced by metabolic status. PURPOSE: We hypothesized that kisspeptin could be involved in regulation of lipid metabolism in the mouse 3T3-L1 cell line and in isolated rat adipocytes. METHODS: First, we characterized expression profiles of KISS1 and GPR54 mRNA and proteins in adipose cells isolated from male rats. Secondly, we studied the effects of kisspeptin-10 on cell proliferation and survival in 3T3-L1 cells. Thirdly, we assessed the rapid action of kisspeptin-10 on lipid metabolism and glucose uptake using 3T3-L1 cells and rat primary adipocytes. Finally, we examined the effects of kisspeptin-10 on the secretion of leptin and adiponectin in rat adipocytes. RESULTS: We have found that: (1) KISS1 and GPR54 were expressed in mouse 3T3-L1 cells and isolated rat adipocytes; (2) kisspeptin-10: (i) inhibited cell proliferation, viability and adipogenesis in 3T3-L1 and decreased expression of PPAR-γ and CEBPß-genes, which are involved in the differentiation processes and adipogenesis; (ii) increased lipolysis in 3T3-L1 cells and rat adipocytes by enhancing expression of periliphin and hormone-sensitive lipase; (iii) modulated glucose uptake and lipogenesis; (iv) stimulated leptin and decreased adiponectin secretion from rat adipocytes. CONCLUSION: Kisspeptin-10 could play a role in the regulation of lipid metabolism in mouse 3T3-L1 cells and rat adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Kisspeptinas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/metabolismo , Adiponectina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Leptina/metabolismo , Camundongos , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1
17.
J Diabetes ; 9(4): 353-361, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27106635

RESUMO

BACKGROUND: Obestatin has a role in regulating food intake and energy expenditure, but the roles of obestatin and the GPR39 receptor in obesity and type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively) are not well understood. The aim of the present study was to investigate changes in obestatin and GPR39 in pathophysiological conditions like obesity, T1DM, and T2DM. METHODS: Using rat models of diet-induced obesity (DIO), T1DM and T2DM (n = 14 per group), obestatin, its precursor protein preproghrelin, and GPR39 expression was investigated in tissues involved in glucose and lipid homeostasis regulation. Furthermore, serum obestatin and ghrelin concentrations were determined. RESULTS: Serum obestatin concentrations were positively correlated with glucagon (r = 0.6456; P < 0.001) and visfatin (r = 0.5560; P < 0.001), and negatively correlated with insulin (r = -0.4362; P < 0.05), adiponectin (r = -0.3998; P < 0.05), and leptin (r = -0.4180; P < 0.05). There were differences in GPR39 and preproghrelin expression in the three animal models. Hepatic GPR39 and preproghrelin mRNA expression was greater in T1DM, T2DM, and obese rats than in lean controls, whereas pancreatic GPR39 mRNA and protein and preproghrelin mRNA expression was decreased in T1DM, T2DM, and DIO rats. Higher GPR39 and preproghrelin protein and mRNA levels were found in adipose tissues of T1DM compared with control. In adipose tissues of T2DM and DIO rats, GPR39 protein levels were lower than in lean or T1DM rats. Preproghrelin mRNA was higher in adipose tissues of T1DM, T2DM, and DIO than lean rats. CONCLUSION: We hypothesize that changes in obestatin, GPR39, and ghrelin may contribute to metabolic abnormalities in T1DM, T2DM, and obesity.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Expressão Gênica , Obesidade/fisiopatologia , Hormônios Peptídicos/genética , Receptores Acoplados a Proteínas G/genética , Análise de Variância , Animais , Glicemia/metabolismo , Western Blotting , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Grelina/sangue , Grelina/genética , Grelina/metabolismo , Glucagon/sangue , Insulina/sangue , Masculino , Obesidade/sangue , Hormônios Peptídicos/sangue , Hormônios Peptídicos/metabolismo , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triglicerídeos/sangue
18.
Islets ; 8(6): 177-185, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27797297

RESUMO

Resistin participates in the regulation of energy homeostasis, insulin resistance, and inflammation. The potential expression in pancreas, and modulation of the endocrine pancreas secretion by resistin is not well characterized, therefore, we examined it on several levels. We examined the localization of resistin in rat pancreatic islets by immunohistochemistry and immunofluorescence, and the potential presence of resistin mRNA by RT-PCR and protein by Western Blot in these structures. In addition, we studied the regulation of insulin and glucagon secretion by resistin in pancreatic INS-1E ß- and InR-G9 α-cell lines as well as isolated rat pancreatic islets. We identified resistin immunoreactivity in the periphery of rat pancreatic islets and confirmed the expression of resistin at mRNA and protein level. Obtained data indicated that resistin is co-localized with glucagon in pancreatic α-cells. In addition, we found that in vitro resistin decreased insulin secretion from INS-1E cells and pancreatic islets at normal (6 mM) and high (24 mM) glucose concentrations, and also decreased glucagon secretion from G9 cells and pancreatic islets at 1 mM, whereas a stimulation of glucagon secretion was observed at 6 mM glucose. Our results suggest that resistin can modulate the secretion of insulin and glucagon from clonal ß or α cells, and from pancreatic islets.


Assuntos
Glucagon/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Resistina/metabolismo , Animais , Linhagem Celular , Células Secretoras de Glucagon/metabolismo , Glucose/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Resistina/genética , Resistina/farmacologia
19.
Mol Med Rep ; 12(6): 8169-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26498652

RESUMO

Obestatin is a 23-amino acid peptide encoded by the ghrelin gene, which regulates food intake, body weight and insulin sensitivity. Obestatin influences glucose and lipid metabolism in mature adipocytes in rodents. However, the role of this peptide in rat preadipocytes remains to be fully understood. The current study characterized the effects of obestatin on lipid accumulation, preadipocyte differentiation, lipolysis and leptin secretion in rat primary preadipocytes. Obestatin enhanced lipid accumulation in rat preadipocytes and increased the expression of surrogate markers of preadipocyte differentiation. At the early stage of differentiation, obestatin suppressed lipolysis. By contrast, lipolysis was stimulated at the late stage of adipogenesis. Furthermore, obestatin stimulated the release of leptin, a key satiety hormone. Overall, the results indicated that obestatin promotes preadipocyte differentiation. Obestatin increased leptin release in preadipocytes, while the modulation of lipolysis appears to depend upon the stage of differentiation.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular/genética , Leptina/metabolismo , Lipólise/genética , Hormônios Peptídicos/fisiologia , Animais , Metabolismo dos Lipídeos/genética , Masculino , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
20.
BMC Genet ; 16: 113, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383117

RESUMO

BACKGROUND: Adipose tissue is recognized as a highly active metabolic and endocrine organ. The hormones secreted by this tissue play an important role in many biochemical processes. It is known that dysfunction of adipocytes can cause insulin resistance, type 2 diabetes or hyperlipidemia. One of the important factors produced in fat tissue is resistin (Retn). It has been postulated that this hormone is involved in glucose homeostasis and insulin resistance. In the present study, the impact of five diet types (ad libitum normal, restricted, high-carbohydrate, high-fat and high-protein) on the Retn gene transcription and methylation profile was evaluated in rats of different ages. RESULTS: Transcript levels and methylation status of the Retn gene were studied in three tissues (muscle, subcutaneous and abdominal fat) in rats at 30, 60 and 120 days of age. We found an effect of tissue type on the Retn transcription in all diet types, as well as an effect of feeding type and age on the mRNA levels for high-fat and high-protein diets. The DNA methylation levels depended only on tissue type. CONCLUSIONS: The obtained results demonstrate a tissue-specific expression pattern and a characteristic DNA methylation profile of the Retn gene in rats. Retn expression seems to be sensitive to nutritional changes, but only in the case of high-fat and high-protein diets. Moreover, an effect of age on Retn mRNA content was observed in these diets. Because no correlation between the transcript level and methylation status was found, we assumed that the transcription control of this gene by DNA methylation of the promoter seems to be unlikely.


Assuntos
Metilação de DNA/genética , Dieta , Resistina/genética , Região 5'-Flanqueadora/genética , Envelhecimento/genética , Animais , Pareamento de Bases/genética , Sequência de Bases , Carboidratos da Dieta , Masculino , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Resistina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA