Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 283: 131196, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146883

RESUMO

Cadmium (Cd) is a non-biodegradable pollutant that has become a global threat due to its bioaccumulation and biomagnification in higher trophic levels of the food chain. Green technologies such as phycoremediation is an emerging approach and possess edge over conventional methods to remediate Cd from the environment. The present investigation elucidates the adaptive mechanism of a freshwater microalga, Scenedesmus sp. IITRIND2 under Cd stress. The microalga showed excellent tolerance to Cd stress with IC50 value of ~32 ppm. The microalga showed phenomenal removal efficiency (~80%) when exposed to 25 ppm of Cd. Such a high uptake of Cd by the cells was accompanied with increased total lipid content (~33% of dry cell weight). Additionally, the elevated level of ROS, lipid peroxidation, glycine-betaine, and antioxidant enzymes evidenced the activation of efficient antioxidant machinery for alleviating the Cd stress. Further, analysis of the fatty acid methyl ester (FAME) presented a steady increase in saturated and polyunsaturated fatty acids with biodiesel properties complying the American and European fuel standards. The study proposes an integrated approach for bioremediation of toxic Cd using hyper-tolerant microalgal strains along with biodiesel production from the generated algal biomass.


Assuntos
Microalgas , Scenedesmus , Biodegradação Ambiental , Biocombustíveis , Biomassa , Cádmio/toxicidade , Ácidos Graxos
2.
Mater Sci Eng C Mater Biol Appl ; 119: 111450, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321588

RESUMO

Immunocompromised patients encounter fungal infections more frequently than healthy individuals. Conventional drugs associated health risk and resistance, portrayed fungal infections as a global health problem. This issue needs to be answered immediately by designing a novel anti-fungal therapeutic agent. Phytoactive molecules based therapeutics are most suitable candidate due to their low cytotoxicity and minimal side effects to the host. In this study, cinnamaldehyde (CA), an FDA approved phytoactive molecule present in cinnamon essential oil was incorporated into gellan (GA)/poly vinyl alcohol (PVA) based electrospun nanofibers to resolve the issues like low water solubility, high volatility and irritant effect associated with CA and also to enhance its therapeutic applications. The drug encapsulation, morphology and physical properties of the synthesized CA nanofibers were evaluated by FESEM, AFM, TGA, FTIR and static water contact angle analysis. The average diameters of CA encapsulated GA/PVA nanofibers and GA/PVA nanofibers were recorded to be 278.5 ± 57.8 nm and 204.03 ± 39.14 nm, respectively. These nanofibers were evaluated for their anti-biofilm activity against Candida using XTT (2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium salt) reduction assay. Data demonstrated that CA encapsulated GA/PVA nanofibers can effectively eradicate 89.29% and 50.45% of Candida glabrata and Candida albicans biofilm respectively. CA encapsulated nanofibers exhibited brilliant antimicrobial property against Staphylococcus aureus and Pseudomonas aeruginosa. The cytotoxicity assay demonstrated that nanofibers loaded with CA have anticancer properties as it reduces cell viability of breast cancer cells (MCF-7) by 27.7%. These CA loaded GA/PVA (CA-GA/PVA) nanofibers could be used as novel wound dressing material and coatings on biomedical implants to eradicate biofilm.


Assuntos
Nanofibras , Álcool de Polivinil , Acroleína/análogos & derivados , Biofilmes , Candida , Humanos , Polissacarídeos Bacterianos
3.
J Biomol Struct Dyn ; 37(9): 2355-2369, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30047324

RESUMO

Natural products acquire massive structural and chemical diversity, which cannot be coordinated by any synthetic libraries for small molecules and they are continuing to inspire novel discoveries in health sciences. We have performed the computational calculations for geometry optimization and prediction of electronic and structural properties of some plant phenolic compounds through Gaussian 09 program. Energies of molecular orbitals were computed, to mimic out the stabilities arising from charge delocalization and intramolecular interactions. This process indicated the eventual charge transfer within the molecules. The molecular docking and ADMET properties of these compounds with a novel anticancer (HER2) and anti-inflammatory (COX-2) targets revealed that two molecules were capable of inhibiting both the targets, and could be used as multi target inhibitors. Furthermore, molecular dynamics simulation studies were performed to elucidate the binding mechanism and the comparison of inhibitor's binding mode with diverse biological activities as anticancer and anti-inflammatory agents. A high-quality association was reported among quantum chemical, ADMET, docking, dynamics and MMGBSA results. Communicated By Ramaswamy H. Sarma.


Assuntos
Anti-Inflamatórios/química , Antineoplásicos/química , Produtos Biológicos/química , Hidroxibenzoatos/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/farmacologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Plantas/química , Ligação Proteica
4.
Curr Top Med Chem ; 18(22): 1937-1954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30526460

RESUMO

BACKGROUND: Farnesol is an acyclic sesquiterpene alcohol, endogenously synthesized via the ergosterol pathway. It is a quorum sensing molecule (QSM) that was first discovered in C. albicans, and is involved in the inhibition of hyphae formation. METHODS: This review focuses on the comprehensive details of occurrence, chemical/biological synthesis of farnesol and its derivatives, and the factors involved in the regulation of their production. Further, the review also presents their cellular functions and diversified biomedical applications. RESULTS: Large-scale production of farnesol can be achieved using chemical synthesis and metabolic engineering approach. Farnesol is involved in the regulation of various physiological processes including filamentation, biofilm development, drug efflux, and apoptosis, etc. Farnesol and its derivatives/ analogues have also been reported to exhibit anti-biofilm, anti-cancer, anti-tumor and fungicidal properties. The antimicrobial potential of farnesol has been enhanced by synergizing it with known antifungal drugs, and also through nano-formulation(s). CONCLUSION: Apart from its quorum sensing activity, farnesol can be used as an effective anti-microbial, anti-inflammatory, ant-allergic, anti-cancerous, and anti-obesity agent.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Farneseno Álcool/farmacologia , Fungos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Percepção de Quorum/efeitos dos fármacos , Antifúngicos/química , Antifúngicos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Biofilmes/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Farneseno Álcool/química , Farneseno Álcool/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Neoplasias/patologia
5.
Curr Top Med Chem ; 18(20): 1769-1791, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30465508

RESUMO

Application of computational tools and techniques has emerged as an invincible instrument to unravel the structure-function relationship and offered better mechanistic insights in the designing and development of new drugs along with the treatment regime. The use of in silico tools equipped modern chemist with armamentarium of extensive methods to meticulously comprehend the structural tenacity of receptor-ligand interactions and their dynamics. In silico methods offers a striking property of being less resource intensive and economically viable as compared to experimental evaluation. These techniques have proved their mettle in the designing of potential lead compounds to combat life-threatening diseases such as AIDS, cancer, tuberculosis, malaria, etc. In the present scenario, computer-aided drug designing has ascertained an essential and indispensable gizmo in therapeutic development. This review will present a brief outline of computational methods used at different facets of drug designing and its latest advancements. The aim of this review article is to briefly highlight the methodologies and techniques used in structure-based/ ligand-based drug designing viz., molecular docking, pharmacophore modeling, density functional theory, protein-hydration and molecular dynamics simulation which helps in better understanding of macromolecular events and complexities.


Assuntos
Biologia Computacional/métodos , Desenho de Fármacos , Desenho Assistido por Computador , Teoria da Densidade Funcional , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacocinética , Proteínas/química , Relação Quantitativa Estrutura-Atividade , Relação Estrutura-Atividade , Testes de Toxicidade , Água/química
6.
Environ Sci Pollut Res Int ; 25(33): 33443-33454, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30264348

RESUMO

Biodiesel production from vegetable oils is not sustainable and economical due to the food crisis worldwide. The development of a cost-effective non-edible feedstock is essential. In this study, we proposed to use aquatic oomycetes for microbial oils, which are cellulolytic fungus-like filamentous eukaryotic microorganisms, commonly known as water molds. They differ from true fungi as cellulose is present in their cell wall and chitin is absent. They show parasitic as well as saprophytic nature and have great potential to utilize decaying animal and plant debris in freshwater habitats. To study the triacylglycerol (TAG) accumulation in the aquatic oomycetes, the isolated water mold Achlya diffusa was cultivated under semi-solid-state conditions on waste sugarcane bagasse, which was compared with the cultivation in Czapek (DOX) medium. A. diffusa grown on waste sugarcane bagasse showed large lipid droplets in its cellular compartment and synthesized 124.03 ± 1.93 mg/gds cell dry weight with 50.26 ± 1.76% w/w lipid content. The cell dry weight and lipid content of this water mold decreased to 89.54 ± 1.21 mg/gds and 38.82% w/w, respectively, when cultivated on standard medium Czapek-Dox agar (CDA). For the fatty acid profile of A. diffusa grown in sugarcane bagasse and CDA, in situ transesterification (IST) and indirect transesterification (IDT) approaches were evaluated. The lipid profile of this mold revealed the presence of C12:0, C14:0, C16:0, C18:0, C18:1, C18:2, C20:0, and C21:0 fatty acids, which is similar to vegetable oils. The biodiesel properties of the lipids obtained from A. diffusa satisfied the limits as determined by international standards ASTM-D6751 and EN-14214 demonstrating its suitability as a fuel for diesel engines.


Assuntos
Biocombustíveis/microbiologia , Celulose/química , Lipídeos/análise , Oomicetos/química , Oomicetos/crescimento & desenvolvimento , Saccharum/química , Animais , Biomassa , Esterificação , Ácidos Graxos/análise , Triglicerídeos/análise
7.
ACS Omega ; 3(9): 12201-12214, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459295

RESUMO

Toxicity challenges by antifungal arsenals and emergence of multidrug resistance scenario has posed a serious threat to global community. To cope up with this alarming situation, phytoactive molecules are richest, safest, and most effective source of broad spectrum antimicrobial compounds. In the present investigation, six phytoactive molecules [cinnamaldehyde (CIN), epigallocatechin, vanillin, eugenol (EUG), furanone, and epigallocatechin gallate] were studied against Candida glabrata and its clinical isolates. Among these, CIN and EUG which are active components of cinnamon and clove essential oils, respectively, exhibited maximum inhibition against planktonic growth of C. glabrata at a concentration of 64 and 128 µg mL-1, respectively. These two molecules effectively inhibited and eradicated approximately 80% biofilm of C. glabrata and its clinical isolates from biomaterials. CIN and EUG increased reactive oxygen species generation, cell lysis, and ergosterol content in plasma membrane and reduced virulence attributes (phospholipase and proteinase) as well as catalase activity of C. glabrata cells. Reduction of mitochondrial membrane potential with increased release of cytochrome c from mitochondria to cytosol indicated initiation of early apoptosis in CIN- and EUG-treated C. glabrata cells. Transcriptional analysis showed that multidrug transporter (CDR1) and ergosterol biosynthesis genes were downregulated in the presence of CIN, while getting upregulated in EUG-treated cells. Interestingly, genes such as 1,3-ß-glucan synthase (FKS1), GPI-anchored protein (KRE1), and sterol importer (AUS1) were downregulated upon treatment of CIN/EUG. These results provided molecular-level insights about the antifungal mechanism of CIN and EUG against C. glabrata including its resistant clinical isolate. The current data established that CIN and EUG can be potentially formulated in new antifungal strategies.

8.
Microb Pathog ; 95: 21-31, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26930164

RESUMO

Candida albicans, an opportunistic fungal pathogen is a major causative agent of superficial to systemic life-threating biofilm infections on indwelling medical devices. These biofilms acts as double edge swords owing to their resistance towards antibiotics and immunological barriers. To overcome this threat ferulic acid encapsulated chitosan nanoparticles (FA-CSNPs) were formulated to assess its efficacy as an antibiofilm agent against C. albicans. These FA-CSNPs were synthesized using ionotropic gelation method and observed through field emission scanning electron microscopy (FESEM) and fluorescent microscopy. Assessment of successful encapsulation and stability of ferulic acid into chitosan nanoparticles was made using Fourier transform infrared spectrum (FTIR), (1)H NMR and thermal analyses. Synthesized FA-CSNPs, were found to be cytocompatible, when tested using Human Embryonic Kidney (HEK-293) cell lines. XTT assay revealed that FA-CSNPs reduced the cell metabolic activity of C. albicans upto 22.5% as compared to native ferulic acid (63%) and unloaded CSNPs (88%) after 24 h incubation. Disruption of C. albicans biofilm architecture was visualized by FESEM. Results highlighted the potential of FA-CSNPs to be used as an effective alternative to the conventional antifungal therapeutics.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Quitosana/metabolismo , Ácidos Cumáricos/farmacologia , Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Materiais Biocompatíveis/metabolismo , Candida albicans/metabolismo , Candida albicans/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Formazans/análise , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem
9.
3 Biotech ; 5(3): 303-315, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28324297

RESUMO

Ferulic acid (FA) is a polyphenolic phytonutrient which possesses strong antiproliferative effect; however, it has limited therapeutic applications due to its physiochemical instability and low bioavailability at the tumor site. In present study, these shortcomings associated with FA were overcome by fabricating FA-encapsulated poly(D,L-lactide-co-glycolide)/polyethylene oxide (PLGA/PEO) blend nanofibers using electrospinning technique. FESEM and fluorescence microscopic analysis imitates the smooth morphology and even distribution of FA within the polymeric nanofibers at optimum 2 wt% concentration of FA. The average diameters were recorded to be 150 ± 47.4 and 200 ± 79 nm for PLGA/PEO and FA-encapsulated PLGA/PEO nanofibers, respectively. The encapsulation, compatibility, and physical state of FA within the nanofibers were further confirmed by FTIR, TGA and XRD analysis. In vitro drug delivery studies demonstrated initial burst liberation of FA within 24 h followed by a sustained release for the subsequent time. MTT assay revealed the effectiveness of FA-encapsulated nanofibers against human breast carcinoma cells (MCF-7) cells as compared to control. FESEM and fluorescence microscopic analysis further confirmed the apoptotic effect of FA-encapsulated PLGA/PEO nanofibers against MCF-7. These fabricated nanofibers hold enormous potential to be used as a therapeutic agent for various biomedical applications.

10.
Biotechnol Rep (Amst) ; 8: 36-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28352571

RESUMO

Ferulic acid is a ubiquitous phytochemical that holds enormous therapeutic potential but has not gained much consideration in biomedical sector due to its less bioavailability, poor aqueous solubility and physiochemical instability. In present investigation, the shortcomings associated with agro-waste derived ferulic acid were addressed by encapsulating it in electrospun nanofibrous matrix of poly (d,l-lactide-co-glycolide)/polyethylene oxide. Fluorescent microscopic analysis revealed that ferulic acid predominantly resides in the core of PLGA/PEO nanofibers. The average diameters of the PLGA/PEO and ferulic acid encapsulated PLGA/PEO nanofibers were recorded as 125 ± 65.5 nm and 150 ± 79.0 nm, respectively. The physiochemical properties of fabricated nanofibers are elucidated by IR, DSC and NMR studies. Free radical scavenging activity of fabricated nanofibers were estimated using di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxicity of ferulic acid encapsulated nanofibers against hepatocellular carcinoma (HepG2) cells. These ferulic acid encapsulated nanofibers could be potentially explored for therapeutic usage in biomedical sector.

11.
Biotechnol Rep (Amst) ; 4: 86-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28626667

RESUMO

Ferulic acid (FA), a ubiquitous natural phenolic phytochemical present in seeds, leaves, bothin its free form and covalently conjugated to the plant cell wall polysaccharides, glycoproteins,polyamines, lignin and hydroxy fatty acids. FA plays a vital role in providing the rigidity to the cell wall and formation of other important organic compounds like coniferyl alcohol, vanillin, sinapic, diferulic acid and curcumin. FA exhibits wide variety of biological activities such as antioxidant, antiinflammatory, antimicrobial, antiallergic, hepatoprotective, anticarcinogenic, antithrombotic, increase sperm viability, antiviral and vasodilatory actions, metal chelation, modulation of enzyme activity, activation of transcriptional factors, gene expression and signal transduction.

12.
J Biol Chem ; 283(51): 35579-89, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18922801

RESUMO

Glomerular injury is often characterized by the effacement of podocytes, loss of slit diaphragms, and proteinuria. Renal ischemia or the loss of blood flow to the kidneys has been widely associated with tubular and endothelial injury but rarely has been shown to induce podocyte damage and disruption of the slit diaphragm. In this study, we have used an in vivo rat ischemic model to demonstrate that renal ischemia induces podocyte effacement with loss of slit diaphragm and proteinuria. Biochemical analysis of the ischemic glomerulus shows that ischemia induces rapid loss of interaction between slit diaphragm junctional proteins Neph1 and ZO-1. To further understand the effect of ischemia on molecular interactions between slit diaphragm proteins, a cell culture model was employed to study the binding between Neph1 and ZO-1. Under physiologic conditions, Neph1 co-localized with ZO-1 at cell-cell contacts in cultured human podocytes. Induction of injury by ATP depletion resulted in rapid loss of Neph1 and ZO-1 binding and redistribution of Neph1 and ZO-1 proteins from cell membrane to the cytoplasm. Recovery resulted in increased Neph1 tyrosine phosphorylation, restoring Neph1 and ZO-1 binding and their localization at the cell membrane. We further demonstrate that tyrosine phosphorylation of Neph1 mediated by Fyn results in significantly increased Neph1 and ZO-1 binding, suggesting a critical role for Neph1 tyrosine phosphorylation in reorganizing the Neph1-ZO-1 complex. This study documents that renal ischemia induces dynamic changes in the molecular interactions between slit diaphragm proteins, leading to podocyte damage and proteinuria.


Assuntos
Isquemia/metabolismo , Nefropatias/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Fosforilação , Podócitos/patologia , Ligação Proteica , Proteinúria/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA