Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982758

RESUMO

The aim of this project is to fabricate hydrogen-rich silicone doped with magnetic nanoparticles for use as a temperature change indicator in magnetic resonance imaging-guided (MRIg) thermal ablations. To avoid clustering, the particles of mixed MnZn ferrite were synthesized directly in a medical-grade silicone polymer solution. The particles were characterized by transmission electron microscopy, powder X-ray diffraction, soft X-ray absorption spectroscopy, vibrating sample magnetometry, temperature-dependent nuclear magnetic resonance relaxometry (20 °C to 60 °C, at 3.0 T), and magnetic resonance imaging (at 3.0 T). Synthesized nanoparticles were the size of 4.4 nm ± 2.1 nm and exhibited superparamagnetic behavior. Bulk silicone material showed a good shape stability within the study's temperature range. Embedded nanoparticles did not influence spin-lattice relaxation, but they shorten the longer component of spin-spin nuclear relaxation times of silicone's protons. However, these protons exhibited an extremely high r2* relaxivity (above 1200 L s-1 mmol-1) due to the presence of particles, with a moderate decrease in the magnetization with temperature. With an increased temperature decrease of r2*, this ferro-silicone can be potentially used as a temperature indicator in high-temperature MRIg ablations (40 °C to 60 °C).


Assuntos
Manganês , Nanopartículas , Prótons , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Zinco/química
2.
Chemphyschem ; 19(13): 1617-1626, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29633465

RESUMO

The growing demand for clean energy catalyzes the development of new devices capable of generating electricity from renewable energy resources. One of the possible approaches focuses on the use of thermoelectric materials (TE), which may utilize waste heat, water, and solar thermal energy to generate electrical power. An improvement of the performance of such devices may be achieved through the development of composites made of an organic matrix filled with nanostructured thermoelectric materials working in a synergetic way. The first step towards such designs requires a better understanding of the fundamental interactions between available materials. In this paper, this matter is investigated and the questions regarding the change of electrical and thermal properties of nanocomposites based on low-conductive polypyrrole enriched with bismuth nanowires of well-defined geometry and morphology is answered. It is clearly demonstrated that the electrical conductivity and the Seebeck coefficient may be tuned either simultaneously or separately within particular Bi NWs content ranges, and that both parameters may be increased at the same time.

3.
Phys Chem Chem Phys ; 18(36): 25221-25229, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711457

RESUMO

The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH3), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mössbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing" with the atomic order in iron oxide nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA