Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884636

RESUMO

Analytical methods for molecular characterization of diagnostic or therapeutic targets have recently gained high interest. This review summarizes the combination of mass spectrometry and surface plasmon resonance (SPR) biosensor analysis for identification and affinity determination of protein interactions with antibodies and DNA-aptamers. The binding constant (KD) of a protein-antibody complex is first determined by immobilizing an antibody or DNA-aptamer on an SPR chip. A proteolytic peptide mixture is then applied to the chip, and following removal of unbound material by washing, the epitope(s) peptide(s) are eluted and identified by MALDI-MS. The SPR-MS combination was applied to a wide range of affinity pairs. Distinct epitope peptides were identified for the cardiac biomarker myoglobin (MG) both from monoclonal and polyclonal antibodies, and binding constants determined for equine and human MG provided molecular assessment of cross immunoreactivities. Mass spectrometric epitope identifications were obtained for linear, as well as for assembled ("conformational") antibody epitopes, e.g., for the polypeptide chemokine Interleukin-8. Immobilization using protein G substantially improved surface fixation and antibody stabilities for epitope identification and affinity determination. Moreover, epitopes were successfully determined for polyclonal antibodies from biological material, such as from patient antisera upon enzyme replacement therapy of lysosomal diseases. The SPR-MS combination was also successfully applied to identify linear and assembled epitopes for DNA-aptamer interaction complexes of the tumor diagnostic protein C-Met. In summary, the SPR-MS combination has been established as a powerful molecular tool for identification of protein interaction epitopes.


Assuntos
Anticorpos/análise , Aptâmeros de Nucleotídeos/análise , Técnicas Biossensoriais/métodos , Epitopos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Anticorpos/química , Anticorpos/imunologia , Afinidade de Anticorpos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Ressonância de Plasmônio de Superfície/métodos
2.
J Am Soc Mass Spectrom ; 31(1): 109-116, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32881511

RESUMO

The polypeptide chemokine Interleukin-8 (IL8) plays a crucial role in inflammatory processes in humans. IL8 is involved in chronic inflammatory lung diseases, rheumatoid arthritis, and cancer. Previous studies have shown that the interaction of IL8 with its natural receptors CXCR1 and CXCR2 is critical in these diseases. Antibodies have been used to study the receptor interaction of IL8; however, the binding epitopes were hitherto unknown. Identification of the antibody epitope(s) could lead to a molecular understanding of the inhibiting mechanism and development of improved inhibitors. Here, we report the epitope identification and the affinity characterization of IL8 to a monoclonal anti-human IL8 antibody inhibiting the receptor binding by a combination of surface plasmon resonance (SPR) biosensor analysis and MALDI-mass spectrometry. SPR determination of IL8 with the immobilized antibody revealed high affinity (KD, 82.2 nM). Epitope identification of IL-8 was obtained by proteolytic epitope-extraction mass spectrometry of the peptide fragments upon high pressure trypsin digestion, using an affinity microcolumn with immobilized anti-IL-8 antibody. MALDI-MS of the affinity-bound peptide elution fraction revealed an assembled (discontinuous) epitope comprising two specific peptides, IL8 [12-20] and IL8 [55-60]. Identical epitope peptides were identified by direct MALDI-MS of the eluted epitope fraction from the immobilized anti-IL8 antibody on the SPR chip. SPR determination of the synthetic epitope peptides provided high affinities confirming their binding specificity. The previously reported finding that the anti-Il8 antibody is inhibiting the IL8-CXCR1 interaction is well consistent with the overlapping region of epitope interactions identified in the present study.


Assuntos
Anticorpos/imunologia , Epitopos/imunologia , Interleucina-8/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Anticorpos/química , Anticorpos/metabolismo , Técnicas Biossensoriais , Cromatografia de Afinidade , Epitopos/química , Humanos , Interleucina-8/antagonistas & inibidores , Interleucina-8/química , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Mapeamento de Peptídeos/métodos , Ressonância de Plasmônio de Superfície
3.
ChemMedChem ; 15(4): 363-369, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31825565

RESUMO

C-Met protein is a glycosylated receptor tyrosine kinase of the hepatocyte growth factor (HGF), composed of an α and a ß chain. Upon ligand binding, C-Met transmits intracellular signals by a unique multi-substrate docking site. C-Met can be aberrantly activated leading to tumorigenesis and other diseases, and has been recognized as a biomarker in cancer diagnosis. C-Met aptamers have been recently considered a useful tool for detection of cancer biomarkers. Herein we report a molecular interaction study of human C-Met expressed in kidney cells with two DNA aptamers of 60 and 64 bases (CLN0003 and CLN0004), obtained using the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure. Epitope peptides of aptamer-C-Met complexes were identified by proteolytic affinity-mass spectrometry in combination with SPR biosensor analysis (PROTEX-SPR-MS), using high-pressure proteolysis for efficient digestion. High affinities (KD , 80-510 nM) were determined for aptamer-C-Met complexes, with two-step binding suggested by kinetic analysis. A linear epitope, C-Met (381-393) was identified for CLN0004, while the CLN0003 aptamer revealed an assembled epitope comprised of two peptide sequences, C-Met (524-543) and C-Met (557-568). Structure modeling of C-Met-aptamers were consistent with the identified epitopes. Specificities and affinities were ascertained by SPR analysis of the synthetic epitope peptides. The high affinities of aptamers to C-Met, and the specific epitopes revealed render them of high interest for cellular diagnostic studies.


Assuntos
Aptâmeros de Nucleotídeos/imunologia , Espectrometria de Massas , Proteólise , Proteínas Proto-Oncogênicas c-met/imunologia , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Relação Dose-Resposta a Droga , Epitopos/química , Epitopos/imunologia , Humanos , Estrutura Molecular , Peptídeos/química , Peptídeos/imunologia , Proteínas Proto-Oncogênicas c-met/genética , Relação Estrutura-Atividade
4.
ChemMedChem ; 13(9): 909-915, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29473701

RESUMO

α-Galactosidase (αGal) is a lysosomal enzyme that hydrolyses the terminal α-galactosyl moiety from glycosphingolipids. Mutations in the encoding genes for αGal lead to defective or misfolded enzyme, which results in substrate accumulation and subsequent organ dysfunction. The metabolic disease caused by a deficiency of human α-galactosidase A is known as Fabry disease or Fabry-Anderson disease, and it belongs to a larger group known as lysosomal storage diseases. An effective treatment for Fabry disease has been developed by enzyme replacement therapy (ERT), which involves infusions of purified recombinant enzyme in order to increase enzyme levels and decrease the amounts of accumulated substrate. However, immunoreactivity and IgG antibody formation are major, therapy-limiting, and eventually life-threatening complications of ERT. The present study focused on the epitope determination of human α-galactosidase A against its antibody formed. Here we report the identification of the epitope of human αGal(309-332) recognized by a human monoclonal anti-αGal antibody, using a combination of proteolytic excision of the immobilized immune complex and surface plasmon resonance biosensing mass spectrometry. The epitope peptide, αGal(309-332), was synthesized by solid-phase peptide synthesis. Determination of its affinity by surface plasmon resonance analysis revealed a high binding affinity for the antibody (KD =39×10-9 m), which is nearly identical to that of the full-length enzyme (KD =16×10-9 m). The proteolytic excision affinity mass spectrometry method is shown here to be an efficient tool for epitope identification of an immunogenic lysosomal enzyme. Because the full-length αGal and the antibody epitope showed similar binding affinities, this provides a basis for reversing immunogenicity upon ERT by: 1) treatment of patients with the epitope peptide to neutralize antibodies, or 2) removal of antibodies by apheresis, and thus significantly improving the response to ERT.


Assuntos
Anticorpos/imunologia , Terapia de Reposição de Enzimas , Epitopos/imunologia , Doença de Fabry/tratamento farmacológico , alfa-Galactosidase/imunologia , Doença de Fabry/imunologia , Humanos , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , alfa-Galactosidase/química , alfa-Galactosidase/metabolismo
5.
J Am Soc Mass Spectrom ; 27(6): 1071-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27112153

RESUMO

Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Massas , Chaperonas Moleculares , alfa-Galactosidase/química , Sítios de Ligação , Doença de Fabry/enzimologia , Humanos
6.
J Am Soc Mass Spectrom ; 25(8): 1472-81, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24845351

RESUMO

Bioaffinity analysis using a variety of biosensors has become an established tool for detection and quantification of biomolecular interactions. Biosensors, however, are generally limited by the lack of chemical structure information of affinity-bound ligands. On-line bioaffinity-mass spectrometry using a surface-acoustic wave biosensor (SAW-MS) is a new combination providing the simultaneous affinity detection, quantification, and mass spectrometric structural characterization of ligands. We describe here an on-line SAW-MS combination for direct identification and affinity determination, using a new interface for MS of the affinity-isolated ligand eluate. Key element of the SAW-MS combination is a microfluidic interface that integrates affinity-isolation on a gold chip, in-situ sample concentration, and desalting with a microcolumn for MS of the ligand eluate from the biosensor. Suitable MS-acquisition software has been developed that provides coupling of the SAW-MS interface to a Bruker Daltonics ion trap-MS, FTICR-MS, and Waters Synapt-QTOF- MS systems. Applications are presented for mass spectrometric identifications and affinity (K(D)) determinations of the neurodegenerative polypeptides, ß-amyloid (Aß), and pathophysiological and physiological synucleins (α- and ß-synucleins), two key polypeptide systems for Alzheimer's disease and Parkinson's disease, respectively. Moreover, first in vivo applications of αSyn polypeptides from brain homogenate show the feasibility of on-line affinity-MS to the direct analysis of biological material. These results demonstrate on-line SAW-bioaffinity-MS as a powerful tool for structural and quantitative analysis of biopolymer interactions.


Assuntos
Peptídeos beta-Amiloides/análise , alfa-Sinucleína/análise , Sequência de Aminoácidos , Substituição de Aminoácidos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/efeitos da radiação , Animais , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos , Técnicas Biossensoriais , Encéfalo/metabolismo , Ciclotrons , Epitopos , Estudos de Viabilidade , Análise de Fourier , Humanos , Espectrometria de Massas , Camundongos Transgênicos , Técnicas Analíticas Microfluídicas , Peso Molecular , Proteínas Mutantes/análise , Proteínas Mutantes/química , Proteínas Mutantes/efeitos da radiação , Neurônios/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos da radiação , Som , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/efeitos da radiação
7.
Electrophoresis ; 34(11): 1572-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23483567

RESUMO

Fabry condition, a lysosomal storage disease (LSD) is characterized by the absence or reduction of the α-galactosidase A activity. Recently, a new diagnostic method for detection of α-galactosidase activity from dried blood spots (DBS) using a chemical substrate and quantification of reaction mixture was developed. To improve this method in the terms of automation, reproducibility, sensitivity, and data reliability, we introduce here an innovative analytical approach based on chip-nanoESI MS. The α-galactosidase assay products derived from DBS of 11 healthy donors and 11 Fabry disease patients were analyzed by NanoMate robot coupled to a high-capacity ion trap MS. Confirmation and structural analysis of the reaction products was achieved by CID and electron transfer dissociation (ETD) MS/MS. The cleavage of a substrate GLA-S generated a product, GLA-P, which was quantified related to an internal standard GLA-IS. Comparative patient versus control analysis indicated a 13-fold reduction in GLA-P/GLA-IS ratio in the case of the patients. Moreover, our method provided direct data on the enzyme, from which it was for the first time possible to discriminate between the patients lacking the enzyme and those presenting a less active one. GLA-IS and GLA-P were confirmed by CID/ETD, which applied together, increased considerably the sequence coverage and provided complementary information for unambiguous product identification. The present chip-nanoESI CID and ETD MS(n) strategy introduced here for first time in LSD diagnosis, provided a maximum confidence in assay product identification, a high sensitivity, speed of analysis, and result reproducibility.


Assuntos
Doença de Fabry/diagnóstico , Dispositivos Lab-On-A-Chip , Espectrometria de Massas por Ionização por Electrospray/instrumentação , alfa-Galactosidase , Teste em Amostras de Sangue Seco , Doença de Fabry/sangue , Doença de Fabry/enzimologia , Humanos , Dispositivos Lab-On-A-Chip/economia , Espectrometria de Massas por Ionização por Electrospray/economia , Fatores de Tempo , alfa-Galactosidase/sangue , alfa-Galactosidase/metabolismo
8.
J Am Soc Mass Spectrom ; 23(11): 1831-40, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22907170

RESUMO

Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar K(D) values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas Granulares de Eosinófilos/química , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/análise , Tirosina/análogos & derivados , Sequência de Aminoácidos , Animais , Anticorpos Imobilizados/química , Sítios de Ligação , Fibrose Cística/metabolismo , Proteínas Granulares de Eosinófilos/análise , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Tirosina/análise , Tirosina/química
9.
Methods Mol Biol ; 896: 399-412, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22821540

RESUMO

Protein amyloidogenesis is generally considered to be a major cause of two most severe neurodegenerative disorders, Parkinson's disease (PD) and Alzheimer's disease (AD). Formation and accumulation of fibrillar aggregates and plaques derived from α-synuclein (α-Syn) and ß-amyloid (Aß) polypeptide in brain have been recognized as characteristics of Parkinson's disease and Alzheimer's disease. Oligomeric aggregates of α-Syn and Aß are considered as neurotoxic intermediate products leading to progressive neurodegeneration. However, molecular details of the oligomerization and aggregation pathway(s) and the molecular structure details are still unclear. We describe here the application of ion-mobility mass spectrometry (IMS-MS) to the identification of α-Syn and Aß oligomerization-aggregation products, and to the characterization of different conformational forms. IMS-MS is an analytical technique capable of separating gaseous ions based on their size, shape, and topography. IMS-MS studies of soluble α-Syn and Aß-aggregates prepared by in vitro incubation over several days were performed on a quadrupole time of flight mass spectrometer equipped with a "travelling wave" ion mobility cell, and revealed the presence of different conformational states and, remarkably, truncation and proteolytic products of high aggregating reactivity. These results suggest that different polypeptide sequences may contribute to the formation of oligomeric aggregates of heterogeneous composition and distinct biochemical properties.


Assuntos
Peptídeos beta-Amiloides/química , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/química , Multimerização Proteica , alfa-Sinucleína/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Secundária de Proteína
10.
J Immunol ; 189(4): 1868-77, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22772448

RESUMO

The proteasome is responsible for the generation of most epitopes presented on MHC class I molecules. Treatment of cells with IFN-γ leads to the replacement of the constitutive catalytic subunits ß1, ß2, and ß5 by the inducible subunits low molecular mass polypeptide (LMP) 2 (ß1i), multicatalytic endopeptidase complex-like-1 (ß2i), and LMP7 (ß5i), respectively. The incorporation of these subunits is required for the production of numerous MHC class I-restricted T cell epitopes. The structural features rather than the proteolytic activity of an immunoproteasome subunit are needed for the generation of some epitopes, but the underlying mechanisms have remained elusive. Experiments with LMP2-deficient splenocytes revealed that the generation of the male HY-derived CTL-epitope UTY(246-254) was dependent on LMP2. Treatment of male splenocytes with an LMP2-selective inhibitor did not reduce UTY(246-254) presentation, whereas silencing of ß1 activity increased presentation of UTY(246-254). In vitro degradation experiments showed that the caspase-like activity of ß1 was responsible for the destruction of this CTL epitope, whereas it was preserved when LMP2 replaced ß1. Moreover, inhibition of the ß5 subunit rescued the presentation of the influenza matrix 58-66 epitope, thus suggesting that a similar mechanism can apply to the exchange of ß5 by LMP7. Taken together, our data provide a rationale why the structural property of an immunoproteasome subunit rather than its activity is required for the generation of a CTL epitope.


Assuntos
Apresentação de Antígeno/imunologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/imunologia , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Antígenos Virais/imunologia , Western Blotting , Eletroforese em Gel Bidimensional , Epitopos de Linfócito T/imunologia , Humanos , Imunoprecipitação , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
11.
J Pept Sci ; 18(6): 373-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22522311

RESUMO

Humanin (HN) is a linear 24-aa peptide recently detected in human Alzheimer's disease (AD) brain. HN specifically inhibits neuronal cell death in vitro induced by ß-amyloid (Aß) peptides and by amyloid precursor protein and its gene mutations in familial AD, thereby representing a potential therapeutic lead structure for AD; however, its molecular mechanism of action is not well understood. We report here the identification of the binding epitopes between HN and Aß(1-40) and characterization of the interaction structure through a molecular modeling study. Wild-type HN and HN-sequence mutations were synthesized by SPPS and the HPLC-purified peptides characterized by MALDI-MS. The interaction epitopes between HN and Aß(1-40) were identified by affinity-MS using proteolytic epitope excision and extraction, followed by elution and mass spectrometric characterization of the affinity-bound peptides. The affinity-MS analyses revealed HN(5-15) as the epitope sequence of HN, whereas Aß(17-28) was identified as the Aß interaction epitope. The epitopes and binding sites were ascertained by ELISA of the complex of HN peptides with immobilized Aß(1-40) and by ELISA with Aß(1-40) and Aß-partial sequences as ligands to immobilized HN. The specificity and affinity of the HN-Aß interaction were characterized by direct ESI-MS of the HN-Aß(1-40) complex and by bioaffinity analysis using a surface acoustic wave biosensor, providing a K(D) of the complex of 610 nm. A molecular dynamics simulation of the HN-Aß(1-40) complex was consistent with the binding specificity and shielding effects of the HN and Aß interaction epitopes. These results indicate a specific strong association of HN and Aß(1-40) polypeptide and provide a molecular basis for understanding the neuroprotective function of HN.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Fármacos Neuroprotetores/química , Doença de Alzheimer/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/síntese química , Modelos Moleculares , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Am Soc Mass Spectrom ; 22(8): 1463-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21953201

RESUMO

Modification of ubiquitin, a key cellular regulatory polypeptide of 76 amino acids, to polyubiquitin conjugates by lysine-specific isopeptide linkage at one of its seven lysine residues has been recognized as a central pathway determining its biochemical properties and cellular functions. Structural details and differences of distinct lysine-isopeptidyl ubiquitin conjugates that reflect their different functions and reactivities, however, are only partially understood. Ion mobility spectrometry (IMS) combined with mass spectrometry (MS) has recently emerged as a powerful tool for probing conformations and topology involved in protein interactions by an electric field-driven separation of polypeptide ions through a drift gas. Here we report the conformational characterization and differentiation of Lys63- and Lys48-linked ubiquitin conjugates by IMS-MS. Lys63- and Lys48-linked di-ubiquitin conjugates were prepared by recombinant bacterial expression and by chemical synthesis using a specific chemical ligation strategy, and characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, circular dichroism spectroscopy, and molecular modeling. IMS-MS was found to be an effective tool for the identification of structural differences of ubiquitin complexes in the gas phase. The comparison of collision cross-sections of Lys63- and Lys48-linked di-ubiquitin conjugates showed a more elongated conformation of Lys63-linked di-ubiquitin. In contrast, the Lys48-linked di-ubiquitin conjugate showed a more compact conformation. The IMS-MS results are consistent with published structural data and a comparative molecular modeling study of the Lys63- and Lys48-linked conjugates. The results presented here suggest IMS techniques can provide information that complements MS measurements in differentiating higher-order polyubiquitins and other isomeric protein linkages.


Assuntos
Lisina/química , Espectrometria de Massas em Tandem/métodos , Ubiquitinas/química , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitinas/metabolismo
13.
J Am Chem Soc ; 133(38): 14844-7, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21861497

RESUMO

Clinically relevant bioactivities of human galectins (adhesion/growth-regulatory galactoside-specific lectins) inspired the design of peptides as new tools to elicit favorable effects (e.g., in growth control) or block harmful binding (e.g., in tissue invasion). To obtain the bioinspired lead compounds, we combined a proteolytic fragmentation approach without/with ligand contact (excision) with mass spectrometric identification of affinity-bound protein fragments, using galectin-1 and -3 as models. Two peptides from the carbohydrate recognition domains were obtained in each case in experimental series rigorously controlled for specificity, and the [157-162] peptide of galectin-3 proved to be active in blocking lectin binding to a neoglycoprotein and to tumor cell surfaces. This approach affords peptide sequences for structural optimization and intrafamily/phylogenetic galectin comparison at the binding-site level with a minimal requirement of protein quantity, and it is even amenable to mixtures.


Assuntos
Biomimética , Galectinas/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Galectinas/química , Humanos , Lactose/química , Lactose/farmacologia , Ligantes , Modelos Moleculares , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Proteólise , Soroalbumina Bovina/antagonistas & inibidores , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
14.
J Mol Recognit ; 24(4): 687-99, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21584879

RESUMO

Human cystatin C (hCC), like many other amyloidogenic proteins, has been shown to form dimers by exchange of subdomains of the monomeric protein. Considering the model of hCC fibrillogenesis by propagated domain swapping, it seems possible that inhibition of this process should also suppress the entire process of dimerization and fibrillogenesis which leads to specific amyloidosis (hereditary cystatin C amyloid angiopathy (HCCAA)). It was reported that exogenous agents like monoclonal antibody against cystatin C are able to suppress formation of cystatin C dimers. In the effort to find a way of controlling the cystatin fibrillization process, the interactions between monoclonal antibody Cyst-13 and cystatin C were studied in detail. The present work describes the determination of the epitope of hCC to a monoclonal antibody raised against cystatin C, Cyst-13, by MALDI mass spectrometry, using proteolytic excision of the immune complex. The shortest epitope sequence was determined as hCC(107-114). Affinity studies of synthetic peptides revealed that the octapeptide with epitope sequence does not have binding ability to Cyst-13, whereas its longer counterpart, hCC(105-114), binds the studied antibody. The secondary structure of the peptides with epitope sequence was studied using circular dichroism and NMR spectroscopy.


Assuntos
Anticorpos Monoclonais/imunologia , Cistatina C/imunologia , Epitopos/imunologia , Dicroísmo Circular , Eletroforese , Epitopos/química , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
15.
J Pept Sci ; 17(3): 184-91, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21308874

RESUMO

Nitration of tyrosine residues has been shown to be an important oxidative modification in proteins and has been suggested to play a role in several diseases such as atherosclerosis, asthma, lung and neurodegenerative diseases. Detection of nitrated proteins has been mainly based on the use of nitrotyrosine-specific antibodies. In contrast, only a small number of nitration sites in proteins have been unequivocally identified by MS. We have used a monoclonal 3-NT-specific antibody, and have synthesized a series of tyrosine-nitrated peptides of prostacyclin synthase (PCS) in which a single specific nitration site at Tyr-430 had been previously identified upon reaction with peroxynitrite17. The determination of antibody-binding affinity and specificity of PCS peptides nitrated at different tyrosine residues (Tyr-430, Tyr-421, Tyr-83) and sequence mutations around the nitration sites provided the identification of an epitope motif containing positively charged amino acids (Lys and/or Arg) N-terminal to the nitration site. The highest affinity to the anti-3NT-antibody was found for the PCS peptide comprising the Tyr-430 nitration site with a K(D) of 60 nM determined for the peptide, PCS(424-436-Tyr-430NO(2) ); in contrast, PCS peptides nitrated at Tyr-421 and Tyr-83 had substantially lower affinity. ELISA, SAW bioaffinity, proteolytic digestion of antibody-bound peptides and affinity-MS analysis revealed highest affinity to the antibody for tyrosine-nitrated peptides that contained positively charged amino acids in the N-terminal sequence to the nitration site. Remarkably, similar N-terminal sequences of tyrosine-nitration sites have been recently identified in nitrated physiological proteins, such as eosinophil peroxidase and eosinophil-cationic protein.


Assuntos
Anticorpos/química , Anticorpos/imunologia , Epitopos/química , Peptídeos/imunologia , Tirosina/análogos & derivados , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Espectrometria de Massas , Dados de Sequência Molecular , Tirosina/química , Tirosina/imunologia
16.
J Am Soc Mass Spectrom ; 21(2): 215-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19914846

RESUMO

An efficient approach in combinatorial chemistry is the synthesis of one-bead-one-compound peptide libraries. In contrast to synthesis and functional screening, which is performed in a largely automated manner, structure determination has been frequently laborious and time-consuming. Here we report an approach for de novo sequencing of peptides on single beads by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance (MALDI-FTICR) tandem mass spectrometry, using a resin with a photolinker for solid-phase peptide synthesis. Upon sorting out single beads, an efficient sample preparation on the MALDI target was developed that enables fragmentation upon irradiation of the bead-matrix mixture with the ultraviolet (UV)-MALDI laser, with enhanced yield of sequence-specific fragment ions at increased laser energy. This approach is illustrated by sequence determinations of two peptides from a library with sequences varying in a single amino acid; the feasibility with tandem-MS procedures and fragment ion assignment was ascertained by sustained off-resonance irradiation/collision induced dissociation (SORI/CID) and infrared multiphoton dissociation (IRMPD) fragmentation.


Assuntos
Análise de Fourier , Peptídeos/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Biblioteca de Peptídeos , Peptídeos/análise
17.
Anal Bioanal Chem ; 395(8): 2465-77, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19841910

RESUMO

We report here on a preliminary investigation of ganglioside composition and structure in human hemangioma, a benign tumor in the frontal cortex (HFC) in comparison to normal frontal cortex (NFC) tissue using for the first time advanced mass spectrometric methods based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) and collision-induced dissociation (CID). The high ionization efficiency, sensitivity and reproducibility provided by the chip-nanoESI approach allowed for a reliable MS-based ganglioside comparative assay. Unlike NFC, ganglioside mixture extracted from HFC was found dominated by species of short glycan chains exhibiting lower overall sialic acid content. In HFC, only GT1 (d18:1/20:0), and GT3 (d18:1/25:1) polysialylated species were detected. Interestingly, none of these trisialylated forms was detected in NFC, suggesting that such components might selectively be associated with HFC. Unlike the case of previously investigated high malignancy gliosarcoma, in HFC one modified O-Ac-GD2 and one modified O-Ac-GM4 gangliosides were observed. This aspect suggests that these O-acetylated structures could be associated with cerebral tumors having reduced malignancy grade. Fragmentation analysis by CID in MS(2) mode using as precursors the ions corresponding to GT1 (d18:1/20:0) and GD1 (d18:1/20:0) provided data corroborating for the first time the presence of the common GT1a and GT1b isomers and the incidence of unusual GT1c and GT1d glycoforms in brain hemangioma tumor.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Gangliosídeos/química , Gangliosídeos/metabolismo , Hemangioma/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Córtex Cerebral/metabolismo , Lobo Frontal/metabolismo , Hemangioma/patologia , Humanos , Isomerismo , Masculino , Ácido N-Acetilneuramínico/análise , Nanotecnologia
18.
Anal Bioanal Chem ; 395(8): 2509-19, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19838688

RESUMO

Formation and accumulation of fibrillar plaques and aggregates of beta-amyloid peptide (Abeta) in brain have been recognized as characteristics of Alzheimer's disease (AD). Oligomeric aggregates of Ass are considered critical intermediates leading to progressive neurodegeneration; however, molecular details of the oligomerization and aggregation pathway and the structures of Abeta-oligomers are hitherto unclear. Using an in vitro fibril formation procedure of Abeta(1-40), beta-amyloid aggregates were prepared and insoluble aggregates separated from soluble products by centrifugation. In this study, ion mobility mass spectrometry (IM-MS) was applied in combination with electron paramagnetic resonance spectroscopy (EPR) to the identification of the components of Abeta-oligomers, and to their structural and topographical characterization. The formation of Abeta-oligomers and aggregates was monitored by gel electrophoresis, and Abeta-oligomer bands were identified by in-gel tryptic digestion and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) to consist predominantly of Abeta(1-40) peptide. First, ion mobility-MS studies of soluble Abeta-aggregates prepared by incubation for 5 days were performed on a quadrupole time-of-flight mass spectrometer and revealed (1) the presence of at least two different conformational states, and (2), the formation of Met-35 oxidized products. For estimation of the size of Abeta-aggregates using EPR spectroscopy, a modified Abeta(1-40) peptide containing an additional N-terminal cysteine residue was prepared, and a 3-(2-iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy radical spin label derivative (IPSL) was coupled by S-alkylation. The EPR spectra of the spin-labeled Cys-Abeta(1-40) oligomers were matched with spectra simulations using a multi-component simulation strategy, resulting in complete agreement with the gel electrophoresis results.


Assuntos
Peptídeos beta-Amiloides/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fragmentos de Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Eletroforese em Gel de Poliacrilamida , Humanos
19.
Bioconjug Chem ; 20(6): 1152-62, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19469549

RESUMO

The modification of ubiquitin to defined oligo-ubiquitinated conjugates has received considerable interest due to the finding that isomeric oligo-ubiquitin conjugates exhibit distinct differences in their biochemical functions, depending on the specific lysine-epsilon-amino linkage used for conjugate formation. Here, we report the design and development of a thioether linkage-based approach for the synthesis of oligo-ubiquitin conjugates with lysine-specific branching by thioether ligation of a linear ubiquitin peptide containing a C-terminal cysteine residue as the "donor" component, with a corresponding lysine-epsilon-amino-branched haloacyl-activated ubiquitin "acceptor" peptide. This approach was successfully used for the synthesis of a lysine-63-linked diubiquitin conjugate by ligation of the modified ubiquitin(1-52)-Cys- donor peptide to the N-terminal Arg-54 residue of the branched Lys-63-linked acceptor peptide, ubiquitin(54-76)(2). Advantages of the present approach are as follows: (i) the conjugation reaction is performed in solution using suitable preformed donor ubiquitin peptides with a C-terminal Cys residue, and (ii) different corresponding N-chloroacetylated ubiquitin acceptor peptides containing the branched Lys residue are employed, providing broad applicability to the preparation of isomeric oligo-ubiquitin conjugates. The Lys-63-diubiquitin conjugate 7 described here was purified by semipreparative HPLC, and its structure and homogeneity ascertained by HPLC and high-resolution MALDI and electrospray-mass spectrometry. CD spectra and molecular modeling indicate a conformationally stable structure of the conjugate with spatial separation of the ubiquitin parts of the Lys-63 linkage. Moreover, the activity of the thioether-linked diubiquitin conjugate was ascertained by in vitro autoubiquitination assay. These results indicate the feasibility of this approach for the preparation of functional oligo-ubiquitin conjugates.


Assuntos
Aminas/química , Cisteína/química , Lisina/química , Peptídeos/química , Sulfetos/química , Ubiquitina/química , Acetilação , Sequência de Aminoácidos , Dicroísmo Circular , Desenho de Fármacos , Isomerismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Especificidade por Substrato , Ubiquitina/genética , Ubiquitinação
20.
Bioconjug Chem ; 20(4): 656-65, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19296605

RESUMO

Here, we report on the synthesis and biological properties of a conjugate in which daunorubicin (Dau) as chemotherapeutic agent was attached through an oxime bond to gonadotropin-releasing hormone-III (GnRH-III) as targeting moiety. In vitro toxicity and the cytostatic effect of the conjugate on MCF-7 human breast and C26 murine colon cancer cell lines were determined, and the results were compared with those obtained for the free daunorubicin, as well as with the doxorubicin containing derivative. In vivo antitumor effect of daunorubicin-GnRH-III was studied on Balb/c female mice transplanted with C26 tumor. Our data indicate that the daunorubicin-GnRH-III conjugate had a lower toxic effect than the free daunorubicin and it was essentially nontoxic up to 15 mg (Dau content)/kg body weight. The treatment of the C26 tumor bearing mice with the conjugate led to tumor growth inhibition and longer survival time in comparison with the controls and with the administration of the free drug. When mice were treated twice with the conjugate (on days 4 and 7 after tumor transplantation), 46% tumor growth inhibition was obtained. In this case, the increase of the median survival time was 38% compared to the controls.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Daunorrubicina/química , Daunorrubicina/farmacologia , Hormônio Liberador de Gonadotropina/química , Oximas/química , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Catepsina B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citostáticos/química , Citostáticos/metabolismo , Citostáticos/farmacologia , Citostáticos/toxicidade , Daunorrubicina/metabolismo , Daunorrubicina/toxicidade , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA