Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Oncol Lett ; 28(1): 306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38774456

RESUMO

Long non-coding (lnc)RNAs serve a pivotal role as regulatory factors in carcinogenesis. The present study aimed to assess the involvement of the lncRNA progression and angiogenesis-associated RNA in hepatocellular carcinoma (PAARH) in liver cancer, along with the associated underlying mechanism. Through the use of reverse transcription-quantitative (RT-q)PCR, differences in the expression levels of PAARH in HepG2, HEP3B2.1.7, HCCLM3, Huh-7 and MHCC97-H liver cancer cell lines and THLE-2 epithelial cell lines were evaluated. The liver cancer cell line with the greatest, significantly different, level of expression relative to the normal liver cell line was selected for subsequent experiments. Using ENCORI database, the putative target genes of the microRNA (miR) miR-6512-3p were predicted. Cells were then transfected with lentiviruses carrying short-hairpin-PAARH to interfere with PAARH expression. Subsequently, HepG2 liver cancer cells were transfected with a miR-6512-3p mimic and an inhibitor, and the expression levels of miR-6512-3p and the LIM and SH3 domain protein 1 (LASP1) in cells were assessed using RT-qPCR analysis. Cell proliferation was subsequently evaluated using colony formation assays, and immunofluorescence and western blotting were used to assess the expression level of LASP1 in transfected cells. The binding interaction between miR-6512-3p and LASP1 was further evaluated using a dual-luciferase reporter gene assay. Liver cancer cells were found to exhibit higher expression levels of PAARH compared with normal liver cells. Following PAARH interference, the expression level of miR-6512-3p was significantly increased, whereas that of LASP1 was significantly decreased, resulting in a reduction in cell proliferation. In liver cancer cells, miR-6512-3p overexpression led to a significant reduction in the LASP1 level and reduced proliferation, whereas suppressing miR-6512-3p led to a significant increase in LASP1 levels and increased proliferation. Additionally, the inhibition of miR-6512-3p caused the states of low LASP1 expression and reduced cell proliferation to be reversed. LASP1, a recently identified target gene of miR-6512-3p, was demonstrated to be suppressed by miR-6512-3p overexpression, thereby inhibiting liver cancer cell proliferation. Taken together, the findings of the present study demonstrate that the lncRNA PAARH may enhance liver cancer cell proliferation by engaging miR-6512-3p to target LASP1.

2.
Sci Rep ; 14(1): 6155, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486042

RESUMO

As the most prevalent epitranscriptomic modification, N6-methyladenosine (m6A) shows important roles in a variety of diseases through regulating the processing, stability and translation of target RNAs. However, the potential contributions of m6A to RNA functions are unclear. Here, we identified a functional and prognosis-related m6A-modified RNA SREBF2-AS1 in hepatocellular carcinoma (HCC). The expression of SREBF2-AS1 and SREBF2 in HCC tissues and cells was measured by RT-qPCR. m6A modification level of SREBF2-AS1 was measured by methylated RNA immunoprecipitation assay. The roles of SREBF2-AS1 in HCC progression and sorafenib resistance were investigated by proliferation, apoptosis, migration, and cell viability assays. The regulatory mechanisms of SREBF2-AS1 on SREBF2 were investigated by Chromatin isolation by RNA purification, RNA immunoprecipitation, CUT&RUN, and bisulfite DNA sequencing assays. Our findings showed that the expression of SREBF2-AS1 was increased in HCC tissues and cells, and positively correlated with poor survival of HCC patients. m6A modification level of SREBF2-AS1 was also increased in HCC and positively correlated with poor prognosis of HCC patients. METTL3 and METTL14-induced m6A modification upregulated SREBF2-AS1 expression through increasing SREBF2-AS1 transcript stability. Functional assays showed that only m6A-modified, but not non-modified SREBF2-AS1 promoted HCC progression and sorafenib resistance. Mechanistic investigations revealed that m6A-modified SREBF2-AS1 bound and recruited m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1 to SREBF2 promoter, leading to DNA demethylation at SREBF2 promoter and the upregulation of SREBF2 transcription. Functional rescue assays showed that SREBF2 was the critical mediator of the oncogenic roles of SREBF2-AS1 in HCC. Together, this study showed that m6A-modified SREBF2-AS1 exerted oncogenic roles in HCC through inducing DNA demethylation and transcriptional activation of SREBF2, and suggested m6A-modified SREBF2-AS1 as a prognostic biomarker and therapeutic target for HCC.


Assuntos
Adenosina/análogos & derivados , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Proteína de Ligação a Elemento Regulador de Esterol 2 , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Desmetilação do DNA , Linhagem Celular Tumoral , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
3.
iScience ; 27(4): 109240, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38495822

RESUMO

Obesity and overweight are significant global health issues, and numerous obesity intervention studies have been conducted. Summarizing current knowledge of interventions aims to inform researchers and policymakers to keep up-to-date with the latest scientific advancements and trends. In this review, we comprehensively retrieved and screened 4,541 studies on obesity intervention published between 2018 and 2022 in the Web of Science Core Collection, and objectively presented research frontiers using bibliometric analysis. The research frontiers of intervention are mainly focused on dietary, exercise, pharmacological interventions, bariatric surgery, environmental, and cognitive interventions. Time-restricted eating is the hottest research topic, followed by probiotics and Roux-en-Y gastric bypass. Gut microbiota is located in the "Basic and transversal themes" quadrant with a high centrality and low density, which has great development potentiality. Obesity intervention is becoming increasingly common,and we advocate for researchers to undertake more focused research endeavors that consider the specific characteristics of diverse populations or patients.

4.
J Hepatocell Carcinoma ; 11: 543-562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496248

RESUMO

Objective: Tumor-associated macrophages play a crucial role in the development of hepatocellular carcinoma (HCC). Our study aimed to investigate the relationship between long coding RNA (lncRNA) maternally expressed gene 3 (MEG3), RNA-binding protein human antigen R (HuR), and messenger RNA C-C motif chemokine 5 (CCL5) in the modulation of M1 and M2 macrophage polarization in HCC. Methods: To induce M1 or M2 polarization, LPS/IFNγ- or IL4/IL13 were used to treat bone marrow derived macrophages (BMDMs). The localization of MEG3 in M1 and M2 macrophages was assessed using fluorescence in situ hybridization assay. Expression levels of MEG3, HuR, CCL5, M1, and M2 markers were measured by RT-qPCR or immunofluorescence staining. Flow cytometry was performed to determine the proportion of F4/80+CD206+ and F4/80+CD68+ cells. RNA pulldown assay was performed to detect the binding of lncRNA MEG3 and HuR. The impacts of HuR on CCL5 stability and activity of CCL5 promoter were evaluated using actinomycin D treatment and luciferase reporter assay. Cell migration, invasiveness, and angiogenesis were assessed using transwell migration and invasion assays and a tube formation assay. A mixture of Huh-7 cells and macrophages were injected into nude mice to explore the effect of MEG3 on tumorigenesis. Results: MEG3 promoted M1-like polarization while dampening M2-like polarization of BMDMs. MEG3 bound to HuR in M1 and M2 macrophages. HuR downregulated CCL5 by inhibiting CCL5 transcription in macrophages. In addition, overexpression of MEG3 suppressed cell metastasis, invasion, and angiogenesis by obstructing macrophage M2 polarization. MEG3 inhibited tumorigenesis in HCC via promotion of M1-like polarization and inhibition of M2-like polarization. Rescue experiments showed that depletion of CCL5 in M2 macrophages reversed MEG3-induced suppressive effect on cell migration, invasion, and tube formation. Conclusion: MEG3 suppresses HCC progression by promoting M1-like while inhibiting M2-like macrophage polarization via binding to HuR and thus upregulating CCL5.

5.
Artigo em Chinês | MEDLINE | ID: mdl-38433691

RESUMO

Objective:To analyze the characteristics of otorhinolaryngological clinical manifestations in children with Mucopolysaccharide(MPS) type Ⅰ and type II in order to improve the knowledge of otorhinolaryngologists about this disease. Methods:Clinical data related to 55 children with MPS type Ⅰ and type II were retrospectively analyzed to investigate the clinical manifestations of MPS in ENT. Results:All 40 patients(72.72%) with MPS had at least one ENT symptom during the course of the disease, with 95% of them having an ENT symptom prior to the diagnosis of MPS; upper airway obstruction was the most common ENT symptom(34, 85.00%), followed by recurrent upper respiratory tract infections(23, 57.50%), and lastly, hearing loss(11, 27.50%); all 26 patients had undergone at least one surgical procedure, of which 15(57.69%) had undergone ENT surgery, and all of these patients underwent ENT surgery before diagnosis. The most common ENT surgery was adenoidectomy. Conclusion:Early clinical manifestations of MPS patients are atypical, but the early and prevalent appearance of otolaryngologic symptoms and increased awareness of the disease among otolaryngologists has a positive impact on the prognosis of MPS.


Assuntos
Surdez , Doenças Nasais , Criança , Humanos , Estudos Retrospectivos , Adenoidectomia , Glicosaminoglicanos
6.
Clin Immunol ; 261: 109924, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310994

RESUMO

Macrophages are the major components of tumour microenvironment, which play critical roles in tumour development. N6-methyladenosine (m6A) also contributes to tumour progression. However, the potential roles of m6A in modulating macrophages in hepatocellular carcinoma (HCC) are poorly understood. Here, we identified ZNNT1 as an HCC-related m6A modification target, which was upregulated and associated with poor prognosis of HCC. METTL3 and METTL16-mediated m6A modification contributed to ZNNT1 upregulation through stabilizing ZNNT1 transcript. ZNNT1 exerted oncogenic roles in HCC. Furthermore, ZNNT1 recruited and induced M2 polarization of macrophages via up-regulating osteopontin (OPN) expression and secretion. M2 Macrophages-recruited by ZNNT1-overexpressed HCC cells secreted S100A9, which further upregulated ZNNT1 expression in HCC cells via AGER/NF-κB signaling. Thus, this study demonstrates that m6A modification activated the ZNNT1/OPN/S100A9 positive feedback loop, which promoted macrophages recruitment and M2 polarization, and enhanced malignant features of HCC cells. m6A modification-triggered ZNNT1/OPN/S100A9 feedback loop represents potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Osteopontina/genética , Osteopontina/metabolismo , Osteopontina/uso terapêutico , Retroalimentação , Linhagem Celular Tumoral , Macrófagos/metabolismo , Microambiente Tumoral , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/uso terapêutico
7.
J Hepatocell Carcinoma ; 10: 1991-2007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954496

RESUMO

Purpose: N6-methyladenosine (m6A) modification plays an important role in regulating RNA maturation, stability, and translation. Thus, m6A modification is involved in various pathophysiological processes including hepatocellular carcinoma (HCC). However, the direct contribution of m6A modifications to RNA function in HCC remains unclear. Here, we identified LEAWBIH (long non-coding RNA epigenetically activating Wnt/ß-catenin signalling in HCC) as an m6A-modified long non-coding RNA (lncRNA) and investigated the effects of m6A on the function of LEAWBIH in HCC. Methods: Quantitative polymerase chain reaction was performed to measure the gene expression in tissues and cells. The level of m6A modification was detected using a methylated RNA immunoprecipitation assay and single-base elongation- and ligation-based qPCR amplification method. Cell proliferation was evaluated using the Glo cell viability and CCK-8 assays. Cell migration and invasion were evaluated using Transwell migration and invasion assays. The mechanisms of m6A modified LEAWBIH were investigated using chromatin isolation by RNA purification, chromatin immunoprecipitation, and dual-luciferase reporter assays. Results: LEAWBIH was highly expressed and correlated with poor survival in HCC patients. LEAWBIH was identified as a m6A-modified transcript. m6A modification increased LEAWBIH transcript stability. The m6A modification level of LEAWBIH was increased in HCC, and a high m6A modification level of LEAWBIH predicted poor survival. LEAWBIH promotes HCC cell proliferation, migration, and invasion in an m6A modification-dependent manner. Mechanistic investigations revealed that m6A-modified LEAWBIH activated Wnt/ß-catenin signaling. m6A-modified LEAWBIH binds to the m6A reader YTHDC1, which further interacts with and recruits H3K9me2 demethylase KDM3B to CTNNB1 promoter, leading to H3K9me2 demethylation and CTNNB1 transcription activation. Functional rescue assays showed that blocking Wnt/ß-catenin signaling abolished the role of LEAWBIH in HCC. Conclusion: m6A-modified LEAWBIH exerts oncogenic effects in HCC by epigenetically activating Wnt/ß-catenin signaling, highlighting m6A-modified LEAWBIH as a promising therapeutic target for HCC.

8.
Sci Rep ; 13(1): 19124, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926706

RESUMO

N6-methyladenosine (m6A) is the most common RNA modification in eukaryotic RNAs. Although the important roles of m6A in RNA fate have been revealed, the potential contribution of m6A to RNA function in various diseases, including hepatocellular carcinoma (HCC), is still unclear. In this study, we identified a novel m6A-modified RNA AC026356.1. We found that AC026356.1 was increased in HCC tissues and cell lines. High expression of AC026356.1 was correlated with poor survival of HCC patients. m6A modification level of AC026356.1 was also increased in HCC and more significantly correlated with poor survival of HCC patients. Functional assays showed that m6A-modified AC026356.1 promoted HCC cellular proliferation, migration, and liver metastasis. Gene set enrichment analysis showed that AC026356.1 activated IL11/STAT3 signaling. Mechanistic investigation showed that m6A-modified AC026356.1 bound to IGF2BP1. The interaction between m6A-modified AC026356.1 and IGF2BP1 promoted the binding of IL11 mRNA to IGF2BP1, leading to increased IL11 mRNA stability and IL11 secretion. Functional rescue assays showed that depletion of IL11 reversed the oncogenic roles of AC026356.1. These findings revealed the potential influences of m6A modification on RNA biological functions and suggested that targeting m6A modification may be a novel strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Interleucina-11/metabolismo , Neoplasias Hepáticas/patologia , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Front Nutr ; 10: 1258242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37850087

RESUMO

Background and aims: Whether ultra-processed food consumption is associated with cancer prognosis remains unknown. We aimed to test whether prediagnosis ultra-processed food consumption is positively associated with all-cause and cancer-specific mortality in patients with colorectal, lung, prostate, or breast cancer. Methods: This study included 1,100 colorectal cancer patients, 1750 lung cancer patients, 4,336 prostate cancer patients, and 2,443 breast cancer patients. Ultra-processed foods were assessed using the NOVA classification before the diagnosis of the first cancer. Multivariable Cox regression was used to calculate hazard ratio (HR) and 95% confidence interval (CI) for all-cause and cancer-specific mortality. Results: High ultra-processed food consumption before cancer diagnosis was significantly associated with an increased risk of all-cause mortality in lung (HRquartile 4 vs. 1: 1.18; 95% CI: 0.98, 1.40; Ptrend = 0.021) and prostate (HRquartile 4 vs. 1: 1.18; 95% CI: 1.00, 1.39; Ptrend = 0.017) cancer patients in a nonlinear dose-response manner (all Pnonlinearity < 0.05), whereas no significant results were found for other associations of interest. Subgroup analyses additionally revealed a significantly positive association with colorectal cancer-specific mortality among colorectal cancer patients in stages I and II but not among those in stages III and IV (Pinteraction = 0.006), and with prostate cancer-specific mortality among prostate cancer patients with body mass index <25 but not among those with body mass index ≥25 (Pinteraction = 0.001). Conclusion: Our study suggests that reducing ultra-processed food consumption before cancer diagnosis may improve the overall survival of patients with lung or prostate cancer, and the cancer-specific survival of certain subgroups of patients with colorectal or prostate cancer.

10.
Mol Med Rep ; 28(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37772389

RESUMO

Hypoxia, a condition characterized by low oxygen levels, serves an important role in the progression of hepatocellular carcinoma (HCC). However, the precise molecular mechanisms underlying hypoxia­induced HCC progression are yet to be fully elucidated. The present study assessed the involvement of two key factors, hypoxia­inducible factor­1α (HIF­1α) and Rac GTPase activating protein 1 (RACGAP1), in HCC development under hypoxic conditions. HIF­1α and RACGAP1 genes were overexpressed and knocked down in Hep3B and Huh7 cells using lentiviral transduction and the levels of HIF­1α and RACGAP1 in the cells were assessed using quantitative PCR, western blotting and immunofluorescence. Co­immunoprecipitation experiments were performed to evaluate the interaction between HIF­1α and RACGAP1. Subsequently, the proliferation, apoptosis, migration and invasion of Hep3B and Huh7 cells were assessed using the Cell Counting Kit­8 assay, flow cytometry, Transwell assay and migration experiments. The expression levels of HIF­1α and RACGAP1 in normal and HCC tumor samples were analyzed utilizing the Gene Expression Profiling Interactive Analysis database. Furthermore, correlations between HIF­1α/RACGAP1 gene expression levels and patient survival outcomes were evaluated using the Kaplan­Meier plotter. Knockdown of HIF­1α resulted in a significant decrease in RACGAP1 expression, whilst overexpression of HIF­1α resulted in a significant increase in RACGAP1 expression. Moreover, overexpression and knockdown of RACGAP1 had the same effect on HIF­1α expression. Additionally, it was demonstrated that HIF­1α and RACGAP1 interacted directly within a complex. Overexpression of HIF­1α or RACGAP1 significantly increased proliferation, invasion and migration, and significantly decreased the proportion of apoptotic Hep3B and Huh7 cells. Conversely, knockdown of HIF­1α or RACGAP1 significantly decreased proliferation, invasion and migration, and significantly increased the proportion of apoptotic Hep3B and Huh7 cells. In addition, the combined knockdown or overexpression of HIF­1α and RACGAP1 had a more pronounced effect on HCC cell migration compared with knockdown of HIF­1α alone. Furthermore, there was a significant positive correlation between the expression levels of HIF­1α and RACGAP1 in HCC tissues and patients with HCC and upregulation of both HIF­1α and RACGAP1 demonstrated a lower overall survival probability. In conclusion, HIF­1α and RACGAP1 may synergistically contribute to the development of HCC, highlighting their potential as valuable targets for HCC therapy.

11.
J Hepatocell Carcinoma ; 10: 1479-1495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701563

RESUMO

Purpose: N6-methyladenosine (m6A) modification has shown critical roles in regulating mRNA fate. Non-coding RNAs also have important roles in various diseases, including hepatocellular carcinoma (HCC). However, the potential influences of m6A modification on non-coding RNAs are still unclear. In this study, we identified a novel m6A-modified ATP8B1-AS1 and aimed to investigate the effects of m6A on the expression and role of ATP8B1-AS1 in HCC. Methods: qPCR was performed to measure the expression of related genes. The correlation between gene expression and prognosis was analyzed using public database. m6A modification level was measured using MeRIP and single-base elongation- and ligation-based qPCR amplification method. The roles of ATP8B1-AS1 in HCC were investigated using in vitro and in vivo functional assays. The mechanisms underlying the roles of ATP8B1-AS1 were investigated by ChIRP and ChIP assays. Results: ATP8B1-AS1 is highly expressed in HCC tissues and cell lines. High expression of ATP8B1-AS1 is correlated with poor overall survival of HCC patients. ATP8B1-AS1 is m6A modified and the 792 site of ATP8B1-AS1 is identified as an m6A modification site. m6A modification increases the stability of ATP8B1-AS1 transcript. m6A modification level of ATP8B1-AS1 is increased in HCC tissues and cell lines, and correlated with poor overall survival of HCC patients. ATP8B1-AS1 promotes HCC cell proliferation, migration, and invasion, which were abolished by the mutation of m6A-modified 792 site. Mechanistic investigation revealed that m6A-modified ATP8B1-AS1 interacts with and recruits m6A reader YTHDC1 and histone demethylase KDM3B to MYC promoter region, leading to the reduction of H3K9me2 level at MYC promoter region and activation of MYC transcription. Functional rescue assays showed that depletion of MYC largely abolished the oncogenic roles of ATP8B1-AS1. Conclusion: m6A modification level of ATP8B1-AS1 is increased and correlated with poor prognosis in HCC. m6A-modified ATP8B1-AS1 exerts oncogenic roles in HCC via epigenetically activating MYC expression.

12.
Cancer Sci ; 114(9): 3649-3665, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400994

RESUMO

As an epitranscriptomic modulation manner, N6 -methyladenosine (m6 A) modification plays important roles in various diseases, including hepatocellular carcinoma (HCC). m6 A modification affects the fate of RNAs. The potential contributions of m6 A to the functions of RNA still need further investigation. In this study, we identified long noncoding RNA FAM111A-DT as an m6 A-modified RNA and confirmed three m6 A sites on FAM111A-DT. The m6 A modification level of FAM111A-DT was increased in HCC tissues and cell lines, and increased m6 A level was correlated with poor survival of HCC patients. m6 A modification increased the stability of FAM111A-DT transcript, whose expression level showed similar clinical relevance to that of the m6 A level of FAM111A-DT. Functional assays found that only m6 A-modified FAM111A-DT promoted HCC cellular proliferation, DNA replication, and HCC tumor growth. Mutation of m6 A sites on FAM111A-DT abolished the roles of FAM111A-DT. Mechanistic investigations found that m6 A-modified FAM111A-DT bound to FAM111A promoter and also interacted with m6 A reader YTHDC1, which further bound and recruited histone demethylase KDM3B to FAM111A promoter, leading to the reduction of the repressive histone mark H3K9me2 and transcriptional activation of FAM111A. The expression of FAM111A was positively correlated with the m6 A level of FAM111A-DT, and the expression of methyltransferase complex, YTHDC1, and KDM3B in HCC tissues. Depletion of FAM111A largely attenuated the roles of m6 A-modified FAM111A-DT in HCC. In summary, the m6 A-modified FAM111A-DT/YTHDC1/KDM3B/FAM111A regulatory axis promoted HCC growth and represented a candidate therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Ativação Transcricional , Proliferação de Células/genética , RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Receptores Virais/genética
13.
J Hepatocell Carcinoma ; 10: 1019-1035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435155

RESUMO

Background: Hepatocellular carcinoma (HCC) is the predominant histological type of primary liver cancer, which ranks sixth among the most common human tumors. Tumor-associated macrophages (TAMs) are an important component of tumor microenvironment (TME) and the M2 macrophage polarization substantially contributes to tumor growth and metastasis. Long non-coding RNA (lncRNA) MEG3 was reported to restrain HCC development. However, whether MEG3 regulates macrophage phenotypic polarization in HCC remains unclear. Methods: Bone marrow derived macrophages (BMDMs) were treated with LPS/IFNγ and IL4/IL13 to induce the M1 and M2 macrophage polarization, respectively. M2-polarized BMDMs were simultaneously transfected with adenovirus vector overexpressing MEG3 (Adv-MEG3). Subsequently, M2-polarized BMDMs were cultured for 24 h with serum-free medium, the supernatants of which were harvested as conditioned medium (CM). HCC cell line Huh7 was cultured with CM for 24 h. F4/80+CD68+ and F4/80+CD206+ cell percentages in M1-and M2-polarized BMDMs were calculated using flow cytometry. Huh7 cell migration, invasion and angiogenesis were determined via Transwell assay and tube formation experiment. Nude mice were implanted with Huh7 cells and Adv-MEG3-transfected M2-polarizd BMDMs, and tumor growth and M2 macrophage polarization markers were assessed. The binding between miR-145-5p and MEG3 or disabled-2 (DAB2) was verified by luciferase reporter assay. Results: MEG3 presented lower expression in HCC tissues than in normal controls, and low expression of MEG3 was correlated to poorer prognosis of HCC patients. MEG3 expression was enhanced during LPS/IFNγ-induced M1 polarization, but was reduced during IL4/IL13-induced M2 polarization. MEG3 overexpression inhibited the expression of M2 polarization markers in both M2-polarized BMDMs and mice. Mechanically, MEG3 bound with miR-145-5p to regulate DAB2 expression. Overexpressing MEG3 suppressed M2 polarization-induced HCC cell metastasis and angiogenesis by upregulating DAB2 and inhibited in vivo tumor growth. Conclusion: LncRNA MEG3 curbs HCC development by repressing M2 macrophage polarization via miR-145-5p/DAB2 axis.

14.
Exp Cell Res ; 430(1): 113697, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422058

RESUMO

Homologous to the E6-associated protein carboxyl terminus domain containing 3 (HECTD3) has been reported to play an essential role in biological processes, including drug resistance, metastasis or apoptosis. However, the relationships between HECTD3 and Colorectal cancer (CRC) remain to be unclear. In this study, we discovered that HECTD3 expressed lowly in CRC compared with normal tissues and patients with low HECTD3 suffered from poorer survival outcomes relative to those with high HECTD3 levels. HECTD3 inhibition could significantly enhance proliferative, clone abilities and self-renewal capacities of CRC cells in vitro and in vivo. Mechanistically, our findings revealed that HECTD3 had endogenous interactions with SLC7A11 proteins. HECTD3 promoted the polyubiquitination of SLC7A11 to trigger the degradation of SLC7A11 proteins. Targeting HECTD3 could notably prolong the half-life period of SLC7A11 proteins, thereby promoting its stability. However, the cysteine mutation at amino acid 823 (ubiquitinase active site) of HECTD3 impaired the polyubiquitination of SLC7A11. HECTD3 deficiency depended on accumulated SLC7A11 proteins to accelerate malignant progression of CRC in vitro and in vivo. Thus, HECTD3 could suppress SLC7A11 levels to attenuate the SLC7A11-mediated cystine uptake, leading to enhanced CRC ferroptosis. SLC7A11 inhibition through polyubiquitination by HECTD3 increased ferroptosis, thereby inhibiting CRC tumor growth. Taken together, these results showed that HECTD3 controlled the stability of SLC7A11 and uncovered the function of HECTD3/SLC7A11 axis in regulating CRC progression.


Assuntos
Neoplasias do Colo , Ferroptose , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Apoptose/genética , Ferroptose/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Exp Cell Res ; 426(1): 113513, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780970

RESUMO

Previous studies have highlighted the poor prognosis of liver cancer, and treatment effects are overall limited. We aimed to confirm the biological roles of SIAH2 in liver cancer and provide potential therapeutic targets. Differential analysis was conducted based on public datasets and found that SIAH2 expressed lowly in HCC samples relative to normal tissues, which was demonstrated in tumor samples via immunohistochemistry (IHC). Besides, SIAH2 overexpression could significantly suppress HCC proliferation. SIAH2 deficiency induced cell proliferation, migration and self-renewal abilities in vitro and in vivo. Mechanistically, SIAH2 could interact with WNK1, and trigger the ubiquitination and degradation of WNK1 proteins. In addition, low SIAH2 depended on elevated WNK1 proteins to drive HCC malignant features, including proliferation, migration and stemness. Meanwhile, we further found that CBX2 could regulate SIAH2 expressions. CBX2 cooperated with EZH2 to mediate the H3K27me3 enrichment on the promoter region of SIAH2 to suppress its transcriptional levels. High CBX2/EZH2 levels in HCC correlated with poor prognosis of patients. Gene set enrichment analysis (GSEA) further implicated that WNK1 correlates tightly with glycolytic process in HCC samples. WNK1 overexpression was found to notably enhance glycolytic activity, whereas WNK1 deficiency could significantly suppress the HCC glycolysis activity. Lastly, the subcutaneous tumor model further demonstrated that targeting WNK1 was effective to inhibit the in vivo tumor growth of SIAH2low HCC. Collectively, down-regulated SIAH2 expressions induced by CBX2/EZH2 could drive progression and glycolysis via accumulating WNK1 proteins, indicating that CBX2/SIAH2/WNK1 axis is a potential prognostic biomarker and therapeutic vulnerability for human HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Complexo Repressor Polycomb 1/genética
16.
Gene ; 856: 147135, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36572073

RESUMO

Osteosarcoma (OS) is still a disorder threatening children life. A growing number of evidences highlights the role of circular RNAs (circRNAs) during OS malignancy. Herein, we aimed to address the pathological contribution of the unrecognized circ_0020378 to OS progression. Analysis of the expression of circ_0020378, miR-556-5p, and MAPK1 in OS tissues and cells was performed using RT-qPCR or western blotting. CCK8, colony formation assays, and Tranwell migration assays were adopted to assess the OS cell viability, clone formation ability and migration. Tumor xenograft mouse model was used to assess the in vivo function of circ_0020378. The relationship between miR-556-5p and circ_0020378 or MAPK1 was discovered using luciferase reporter assays and RNA binding protein immunoprecipitation tests. In OS tissues and cells, circ_0020378 and MAPK1 were significantly elevated, although miR-556-5p expression exhibited a different pattern. Circ_0020378 silence attenuated OS cell proliferation, colony formation ability and migration in vitro, and retarded tumor growth in vivo. MiR-556-5p was targeted by circ_0020378. Furthermore, miR-556-5p inhibitor promoted the OS cell proliferation and migration, while this promoted malignant actions of OS cells were abrogated by circ_0020378 silence. Additionally, miR-556-5p directly bound to MAPK1, and MAPK1 silence exerted its inhibitory effect on OS cell proliferation and migration, and yet the inhibition was offset by miR-556-5p inhibitor. Circ_0020378 acts as a novel tumor promoter that controls OS growth by miR-556-5p/MAPK1 axis, suggesting circ_0020378/miR-556-5p/MAPK1 might be a novel target for OS intervention.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , Animais , Camundongos , Osteossarcoma/genética , Proliferação de Células/genética , Western Blotting , Modelos Animais de Doenças , MicroRNAs/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteína Quinase 1 Ativada por Mitógeno
17.
Transl Cancer Res ; 11(8): 2843-2857, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36093523

RESUMO

Background: Wilms tumor is the most common childhood kidney malignant tumor. However, the genes and signaling pathways associated with the disease remain incompletely understood. Methods: GSE66405, GSE73209, and GSE11151 were collected from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were detected using R software. A protein-protein interaction (PPI) network was constructed using the STRING database, and the clustering modules and hub genes were analyzed with the Cytoscape software. Genes functional enrichment analyses were performed using the package "clusterProfiler" in R software, and the gene set enrichment analysis (GSEA) analysis was performed using GSEA v4.1.0 software. Results: Respectively, 3,092, 620, and 3,567 DEGs were screened in GSE66405, GSE73209, and GSE11151, with a total of 474 common DEGs detected in three expression profiles. For the common DEGs, the top 30 significant results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were presented. Furthermore, five modules were found as the most related modules to Wilms tumor. GO term and KEGG pathway enrichment analyses of the genes in all the modules identified 10 GO terms and 5 KEGG pathways as significantly enriched. The top 10 hub DEGs of the PPI network were ALB, CDH1, EGF, AQP2, REN, SLC2A2, SPP1, UMOD, NPHS2, and FOXM1, with ALB identified as the highest degree. GSEA results showed 11 pathways were correlated with ALB expression in GSE66405 and 10 pathways were related to the expression of the ALB gene in GSE73209. Conclusions: Our study revealed robust gene signatures in Wilms tumor. Dysregulations of the signaling pathways were associated with the development and progression of the Wilms tumor, and 10 hub genes may play important roles in its diagnosis and therapy.

18.
Pathol Res Pract ; 237: 153955, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841693

RESUMO

BACKGROUND: Hepatocellular Carcinoma (HCC) is recognized as the second leading cause of cancer-associated deaths globally. Hypoxia-inducible factor 1alpha (HIF1A) has been documented to promote HCC cell migration, invasion and cell cycle. Dual specificity phosphatase 18 (DUSP18) has been predicted to be up-regulated in hypoxia and its expression is positively linked to HIF1A expression in HCC cells. However, their function and molecular mechanism have not been investigated in HCC in depth. PURPOSE: This study aimed to uncover the functional roles of HIF1A and DUSP18, as well as relevant mechanisms underlying their regulation in HCC cells. METHODS: RT-qPCR and western blot were performed to examine gene expression. Functional assays were implemented to reveal the regulatory impact of target genes on HCC cells. Mechanism experiments were conducted to analyze gene interaction. RESULTS: DUSP18 was found to have significantly high expression in hypoxia-induced HCC cells. HIF1A promoted HCC cell migration, invasion and cell cycle by transcriptionally activating DUSP18. DUSP18 mediated MAPK14 dephosphorylation to weaken MAPK14 activity, which further inhibited MAPK14-mediated TP53 phosphorylation, consequently promoting multiple biological behaviors of HCC cells. CONCLUSION: Hypoxia-induced HIF1A activates DUSP18 transcription to further promote MAPK14 dephosphorylation, thereby suppressing TP53 phosphorylation and functionally promoting malignant behaviors of HCC cells.


Assuntos
Carcinoma Hepatocelular , Fosfatases de Especificidade Dupla , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Proteína Quinase 14 Ativada por Mitógeno , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Regulação Neoplásica da Expressão Gênica , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/patologia , Proteína Quinase 14 Ativada por Mitógeno/genética , Transdução de Sinais/genética
19.
Front Oncol ; 12: 809430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359367

RESUMO

Objective: To investigate the correlation between intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and the pathological classification of idiopathic orbital inflammatory pseudotumors (IOIPs). Methods: Nineteen patients who were diagnosed with IOIPs (a total of 24 affected eyes) between November 2018 and December 2020 were included in the study. All the patients underwent magnetic resonance imaging orbital plain scans and IVIM-DWI multiparameter scans before an operation. The true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) values were obtained. Based on histopathology, the lesions were divided into three types: lymphocytic infiltration, fibrosclerotic, and mixed. The correlation between IVIM-DWI parameters and pathological classification was tested with the histopathological results as the gold standard. The data were analyzed using SPSS version 17.0, with P < 0.05 defined as significant. Results: Among the 19 patients (24 eyes) affected by IOIP, there were no significant differences between IOIP pathological classification and gender or age (P > 0.05). There were statistically significant differences between the D and f values for different pathological types of IOIP and IVIM parameters (P < 0.05), and there was no significant difference in D* value between the different pathological types (P > 0.05). Conclusion: The D and f values showed correlation with different types of IOIP, and the sensitivity of the D value was higher than that of the f value. The D* value showed no significant distinction between pathological types of IOIP.

20.
Cell Death Dis ; 13(2): 102, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110549

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading lethal malignancies and a hypervascular tumor. Although some long non-coding RNAs (lncRNAs) have been revealed to be involved in HCC. The contributions of lncRNAs to HCC progression and angiogenesis are still largely unknown. In this study, we identified a HCC-related lncRNA, CMB9-22P13.1, which was highly expressed and correlated with advanced stage, vascular invasion, and poor survival in HCC. We named this lncRNA Progression and Angiogenesis Associated RNA in HCC (PAARH). Gain- and loss-of function assays revealed that PAARH facilitated HCC cellular growth, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumor growth and angiogenesis in vivo. PAARH functioned as a competing endogenous RNA to upregulate HOTTIP via sponging miR-6760-5p, miR-6512-3p, miR-1298-5p, miR-6720-5p, miR-4516, and miR-6782-5p. The expression of PAARH was significantly positively associated with HOTTIP in HCC tissues. Functional rescue assays verified that HOTTIP was a critical mediator of the roles of PAARH in modulating HCC cellular growth, apoptosis, migration, and invasion. Furthermore, PAARH was found to physically bind hypoxia inducible factor-1 subunit alpha (HIF-1α), facilitate the recruitment of HIF-1α to VEGF promoter, and activate VEGF expression under hypoxia, which was responsible for the roles of PAARH in promoting angiogenesis. The expression of PAARH was positively associated with VEGF expression and microvessel density in HCC tissues. In conclusion, these findings demonstrated that PAARH promoted HCC progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. PAARH represents a potential prognostic biomarker and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/patologia , Neovascularização Patológica/patologia , RNA Longo não Codificante/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , MicroRNAs/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA