Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405358, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700137

RESUMO

Eosinophils are important immune effector cells that affect T cell-mediated antitumor immunity. However, the low frequency and restrained activity of eosinophils restricted the development of cancer immunotherapies. We herein report an eosinophil-activating semiconducting polymer nanoparticle (SPNe) to improve photodynamic tumor immunogenicity, modulate eosinophil chemotaxis, and reinvigorate T-cell immunity for activated cancer photo-immunotherapy. SPNe is composed of an amphiphilic semiconducting polymer and a dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin via a 1O2-cleavable thioketal linker. Upon localized NIR photoirradiation, SPNe can generate 1O2 to elicit immunogenic cell death of tumors and induce specific activation of sitagliptin. The subsequent inhibition of DPP4 increases intratumoral CCL11 levels to promote eosinophil chemotaxis and activation. SPNe-mediated photo-immunotherapy synergized with immune checkpoint blockade greatly promotes tumor infiltration and activation of both eosinophils and T cells, effectively inhibiting tumor growth and metastasis. Thus, this study presents a generic polymeric nanoplatform to modulate specific immune cells for precision cancer immunotherapy.

2.
J Am Chem Soc ; 146(18): 12656-12663, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683724

RESUMO

Tumor-associated mast cells (TAMCs) have been recently revealed to play a multifaceted role in the tumor microenvironment. Noninvasive optical imaging of TAMCs is thus highly desired to gain insights into their functions in cancer immunotherapy. However, due to the lack of a single enzyme that is specific to mast cells, a common probe design approach based on single-enzyme activation is not applicable. Herein, we reported a bienzyme-locked molecular probe (THCMC) based on a photoinduced electron transfer-intramolecular charge-transfer hybrid strategy for in vivo imaging of TAMCs. The bienzyme-locked activation mechanism ensures that THCMC exclusively turns on near-infrared (NIR) fluorescence only in the presence of both tryptase and chymase specifically coexpressed by mast cells. Thus, THCMC effectively distinguishes mast cells from other leukocytes, including T cells, neutrophils, and macrophages, a capability lacking in single-locked probes. Such a high specificity of THCMC allows noninvasive tracking of the fluctuation of TAMCs in the tumor of living mice during cancer immunotherapy. The results reveal that the decreased intratumoral signal of THCMC after combination immunotherapy correlates well with the reduced population of TAMCs, accurately predicting the inhibition of tumor growth. Thus, this study not only presents the first NIR fluorescent probe specific for TAMCs but also proposes a generic bienzyme-locked probe design approach for in vivo cell imaging.


Assuntos
Corantes Fluorescentes , Mastócitos , Imagem Óptica , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Camundongos , Triptases/metabolismo , Humanos , Quimases/metabolismo , Neoplasias/diagnóstico por imagem , Linhagem Celular Tumoral
3.
Adv Mater ; : e2314084, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446383

RESUMO

Although colorectal cancer diagnosed at an early stage shows high curability, methods simultaneously possessing point-of-care testing ability and high sensitivity are limited. Here, an orally deliverable biomarker-activatable probe (termed as HATS) for early detection of orthotopic tumors via remote urinalysis is presented. To enable its oral delivery to the colon, HATS is designed to have remarkable resistance to acidity and digestive enzymes in the stomach and small intestine and negligible intestinal absorption. Upon reaction with a cancer biomarker in the colon segment, HATS releases a small fragment of tetrazine that can transverse the intestinal barrier, enter blood circulation, and ultimately undergo renal clearance to urine. Subsequently, the urinary tetrazine fragment is detected by bioorthogonal reaction with trans-cyclooctene-caged resorufin (TCO-Reso) to afford a rapid and specific fluorescence enhancement of TCO-Reso. Such signal readout is correlated with the urinary tetrazine concentration and thus measures the level of cancer biomarkers in the colon. HATS-based optical urinalysis detects orthotopic colon tumors two weeks earlier than clinical serological tests and can be developed to a point-of-care paper test. Thereby, HATS-based urinalysis provides a non-invasive and sensitive approach to cancer screening at low-resource settings.

4.
Adv Mater ; : e2400762, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445783

RESUMO

Combination cancer immunotherapy based on electromagnetic energy and immunotherapy shows potent anti-cancer efficacy. However, as a factor that mediates tumor metastasis and immune suppression, the impact of tumor exosomes on therapy under electromagnetic energy stimulation remains unclear. Herein, findings indicate that sonodynamic therapy (SDT) increases serum exosome levels by inducing apoptotic exosomes and loosening the tumor extracellular matrix, promoting lung metastasis. To address this problem, an exosome-inhibiting polymeric sonosensitizer (EIPS) selectively inhibiting tumor exosome generation in response to the tumor biomarker is synthesized. EIPS consists of a semiconducting polymer backbone capable of inducing SDT and a poly(ethylene glycol) layer conjugated with a tumor-specific enzyme-responsive exosome inhibitor prodrug. After being cleaved by tumor Cathepsin B, EIPS releases active exosome inhibitors, preventing tumor exosome-mediated immune suppression and lung metastasis. As a result, EIPS elicits robust antitumor effects through the synergistic effect of SDT and tumor exosome inhibition, completely preventing lung metastasis and establishing a long-term immune memory effect. This is the first example showing that combining SDT with tumor-specific exosome inhibition can elicit a potent immune response without the help of typical immune agonists.

5.
Angew Chem Int Ed Engl ; 63(21): e202319780, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38523406

RESUMO

Tumor-associated macrophages (TAMs) play a role in both pro- and anti-tumor functions; and the targeted polarization from M2 to M1 TAMs has become an effective therapy option. Although detection of M1 TAMs is imperative to assess cancer immunotherapeutic efficacy, existing optical probes suffer from shallow tissue penetration depth and poor specificity toward M1 TAMs. Herein, we report a tandem-locked NIR chemiluminescent (CL) probe for specific detection of M1 TAMs. Through a combined molecular engineering approach via both atomic alternation and introduction of electron-withdrawing groups, near-infrared (NIR) chemiluminophores are screened out to possess record-long emission (over 800 nm), record-high CL quantum yield (2.7 % einstein/mol), and prolonged half-life (7.7 h). Based on an ideal chemiluminophore, the tandem-locked probe (DPDGN) is developed to only activate CL signal in the presence of both tumour (γ-glutamyl transpeptidase) and M1 macrophage biomarkers (nitric oxide). Such a tandem-lock design ensures its high specificity towards M1 macrophages in the tumor microenvironment over those in normal tissues or peripheral blood. Thus, DPDGN permits noninvasive imaging and tracking of M1 TAM in the tumor of living mice during R837 treatment, showing a good correlation with ex vivo methods. This study not only reports a new molecular approach towards highly efficient chemiluminophores but also reveals the first tandem-locked CL probes for enhanced imaging specificity.


Assuntos
Macrófagos Associados a Tumor , Animais , Camundongos , Imagem Óptica , Humanos , Substâncias Luminescentes/química , Medições Luminescentes
6.
Adv Mater ; 36(11): e2310605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040414

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) has a high prevalence but is poorly managed for cancer patients due to the lack of reliable and sensitive diagnostic techniques. Molecular optical imaging can provide a noninvasive way for real-time monitoring of CIPN; However, this is not reported, likely due to the absence of optical probes capable of imaging deep into the spinal canal and possessing sufficient sensitivity for minimal dosage through local injection into the dorsal root ganglia. Herein, a near-infrared (NIR) chemiluminophore (MPBD) with a chemiluminescence quantum yield higher than other reported probes is synthesized and a NIR activatable chemiluminescent probe (CalCL) is developed for in vivo imaging of CIPN. CalCL is constructed by caging MPBD with calpain-cleavable peptide moiety while conjugating polyethylene glycol chain to endow water solubility. Due to the deep-tissue penetration of chemiluminescence and specific turn-on response of CalCL toward calpain (a hallmark of CIPN), it allows for sensitive detection of paclitaxel-mediated CIPN in living mice, which is unattainable by fluorescence imaging. This study thus not only develops a highly efficient chemiluminescent probe, but also presents the first optical imaging approach toward high-throughput screening of neurotoxic drugs.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Humanos , Camundongos , Animais , Luminescência , Calpaína/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Paclitaxel , Antineoplásicos/efeitos adversos , Imagem Óptica
7.
Angew Chem Int Ed Engl ; 63(4): e202313117, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38018329

RESUMO

Afterglow luminescence imaging probes, with long-lived emission after cessation of light excitation, have drawn increasing attention in biomedical imaging field owing to their elimination of autofluorescence. However, current afterglow agents always suffer from an unsatisfactory signal intensity and complex systems consisting of multiple ingredients. To address these issues, this study reports a near-infrared (NIR) afterglow luminophore (TPP-DO) by chemical conjugation of an afterglow substrate and a photosensitizer acting as both an afterglow initiator and an energy relay unit into a single molecule, resulting in an intramolecular energy transfer process to improve the afterglow brightness. The constructed TPP-DO NPs emit a strong NIR afterglow luminescence with a signal intensity of up to 108  p/s/cm2 /sr at a low concentration of 10 µM and a low irradiation power density of 0.05 W/cm2 , which is almost two orders of magnitude higher than most existing organic afterglow probes. The highly bright NIR afterglow luminescence with minimized background from TPP-DO NPs allows a deep tissue penetration depth ability. Moreover, we develop a GSH-activatable afterglow probe (Q-TPP-DO NPs) for ultrasensitive detection of subcutaneous tumor with the smallest tumor volume of 0.048 mm3 , demonstrating the high potential for early diagnosis and imaging-guided surgical resection of tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Diagnóstico por Imagem , Fármacos Fotossensibilizantes/química , Luminescência
8.
Adv Mater ; 36(1): e2308924, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864513

RESUMO

Cancer immunotherapy has become a promising method for cancer treatment, bringing hope to advanced cancer patients. However, immune-related adverse events caused by immunotherapy also bring heavy burden to patients. Semiconducting polymer nanoparticles (SPNs) as an emerging nanomaterial with high biocompatibility, can eliminate tumors and induce tumor immunogenic cell death through different therapeutic modalities, including photothermal therapy, photodynamic therapy, and sonodynamic therapy. In addition, SPNs can work as a functional nanocarrier to synergize with a variety of immunomodulators to amplify anti-tumor immune responses. In this review, SPNs-based combination cancer immunotherapy is comprehensively summarized according to the SPNs' therapeutic modalities and the type of loaded immunomodulators. The in-depth understanding of existing SPNs-based therapeutic modalities will hopefully inspire the design of more novel nanomaterials with potent anti-tumor immune effects, and ultimately promote their clinical translation.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Polímeros/uso terapêutico , Semicondutores , Técnicas Fotoacústicas/métodos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Imunoterapia , Adjuvantes Imunológicos/uso terapêutico , Linhagem Celular Tumoral
9.
Nat Mater ; 22(11): 1421-1429, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667071

RESUMO

X-ray-induced afterglow and radiodynamic therapy tackle the tissue penetration issue of optical imaging and phototherapy. However, inorganic nanophosphors used in this therapy have their radio afterglow dynamic function as always on, limiting the detection specificity and treatment efficacy. Here we report organic luminophores (IDPAs) with near-infrared afterglow and 1O2 production after X-ray irradiation for cancer theranostics. The in vivo radio afterglow of IDPAs is >25.0 times brighter than reported inorganic nanophosphors, whereas the radiodynamic production of 1O2 is >5.7 times higher than commercially available radio sensitizers. The modular structure of IDPAs permits the development of a smart molecular probe that only triggers its radio afterglow dynamic function in the presence of a cancer biomarker. Thus, the probe enables the ultrasensitive detection of a diminutive tumour (0.64 mm) with superb contrast (tumour-to-background ratio of 234) and tumour-specific radiotherapy for brain tumour with molecular precision at low dosage. Our work reveals the molecular guidelines towards organic radio afterglow agents and highlights new opportunities for cancer radio theranostics.


Assuntos
Nanopartículas , Neoplasias , Humanos , Sondas Moleculares , Medicina de Precisão , Nanopartículas/química , Fototerapia
10.
Adv Mater ; 35(48): e2306739, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660291

RESUMO

Real-time in vivo imaging of RNA can enhance the understanding of physio-pathological processes. However, most nucleic acid-based sensors have poor resistance to nucleases and limited photophysical properties, making them suboptimal for this purpose. To address this, a semiconducting polymer nanospherical nucleic acid probe (SENSE) for transcriptomic imaging of cancer immunity in living mice is developed. SENSE comprises a semiconducting polymer (SP) backbone covalently linked with recognition DNA strands, which are complemented by dye-labeled signal DNA strands. Upon detection of targeted T lymphocyte transcript (Gzmb: granzyme B), the signal strands are released, leading to a fluorescence enhancement correlated to transcript levels with superb sensitivity. The always-on fluorescence of the SP core also serves as an internal reference for tracking SENSE uptake in tumors. Thus, SENSE has the dual-signal channel that enables ratiometric imaging of Gzmb transcripts in the tumor of living mice for evaluating chemo-immunotherapy; moreover, it has demonstrated sensitivity and specificity comparable to flow cytometry and quantitative polymerase chain reaction,  yet offering a faster and simpler means of T cell detection in resected tumors. Therefore, SENSE represents a promising tool for in vivo RNA imaging.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Polímeros , Transcriptoma , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Sondas de Ácido Nucleico , RNA , Imagem Óptica/métodos , DNA , Imunoterapia
11.
Angew Chem Int Ed Engl ; 62(43): e202310178, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37671691

RESUMO

Sono-immunotherapy holds great potential for deep tumor inhibition; however, smart sono-therapeutic agents to simultaneously eliminate 'domestic' tumor cells and regulate the 'community' tumor immune microenvironment have rarely been developed. Herein, we report a spatiotemporally controllable semiconducting iron-chelated nano-metallomodulator (SINM) for hypersensitive sono-metallo-immunotherapy of cancer. SINM consists of a semiconducting polymer (SP) backbone chelating iron ions (Fe3+ ) with thiophene-based Schiff base structure, and a hydrophilic side chain. Upon accumulation in tumors after systemic administration, SINM specifically arouses ferroptosis and M1 macrophage polarization due to its response toward the tumor redox environment; meanwhile, the chelation of Fe3+ enhances the sono-sensitizing effect of SPs, leading to enhanced generation of reactive oxygen species for immunogenic cell death. Such combined sonodynamic metallo-immunotherapy of SINM efficiently ablates deep tumor and spatiotemporally regulates immunophenotypes.


Assuntos
Quelantes de Ferro , Neoplasias , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Fatores Imunológicos , Adjuvantes Imunológicos , Neoplasias/tratamento farmacológico , Imunoterapia , Ferro , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Angew Chem Int Ed Engl ; 62(40): e202308362, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37587095

RESUMO

Cytokine therapy mediates the interaction between immune cells and non-immune cells in the tumor microenvironment (TME), forming a promising approach in cancer therapy. However, the dose-dependent adverse effects and non-selective stimulation of cytokines limit their clinical use. We herein report a sonodynamic cytokine nano-immunocomplex (SPNAI ) that specifically activates effector T cells (Teffs) for antitumor immunotherapy. By conjugating anti-interleukin-2 (anti-IL-2) antibodies S4B6 on the semiconducting polymer nanoparticles to afford SPNA , this nanoantibody SPNA can bind with IL-2 to form SPNAI which can block the interaction between IL-2 and regulatory T cells (Tregs), selectively activating Teffs in TME. Moreover, SPNAI generates 1 O2 to trigger immunogenic cell death of cancer cells upon sono-irradiation, which promotes the maturation of dendritic cells and the proliferation of Teffs. This SPNAI -mediated combination sonodynamic immunotherapy thus elevates the ratio of Teffs/Tregs in TME, resulting in inhibition of tumor growth, suppression of lung metastasis and prevention of tumor relapse.


Assuntos
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Interleucina-2 , Linfócitos T Reguladores/metabolismo , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Linhagem Celular Tumoral
13.
Adv Mater ; 35(51): e2303059, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37263297

RESUMO

Sonodynamic therapy (SDT) is a promising non-invasive therapeutic modality to treat deep-seated tumors owing to the good tissue penetration ability and spatiotemporal controllability of ultrasound (US); however, the low sonodynamic activity and potential side effects greatly limit its clinical translation. Cancer immunotherapy that leverages the immune system to fight against cancer has great potential to synergize with SDT for the treatment of cancer with high efficiency and safety. In this review, the convergence of SDT with cancer immunotherapy to exert their merits and break through the limitations of combination cancer sono-immunotherapy are discussed. The focus is on the development and construction of organic materials with high sonodynamic activity and immunotherapeutic efficiency. These organic materials not only induce immunogenic cell death to improve tumor immunogenicity via SDT but also activate antitumor immunity via immuno-oncology drug-mediated immune pathway modulation. The combination of various immuno-oncology drugs with organic sonosensitizers is categorized and discussed along with the prospects and challenges for clinical translation.


Assuntos
Neoplasias , Terapia por Ultrassom , Humanos , Neoplasias/terapia , Ultrassonografia , Terapia Combinada , Imunoterapia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo
14.
Angew Chem Int Ed Engl ; 62(32): e202307272, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37312610

RESUMO

The efficacy of combination immunotherapy has been limited by tumor specificity and immune-related adverse events (irAEs). Herein, we report the development of polymeric STING pro-agonists (PSPA), whose sono-immunotherapeutic efficacy is activated by sono-irradiation and elevated glutathione (GSH) within the tumor microenvironment (TME). PSPA is composed of sonosensitizers (semiconducting polymer) and STING agonists (MSA-2) via the GSH-activatable linkers. Under sono-irradiation, PSPA serves as a sonosensitizer to generate 1 O2 and induce immunogenic cell death (ICD) of malignant tumor cells. Furthermore, MSA-2 is released specifically in tumor microenvironment with highly expressed GSH, minimizing off-target side effects. The activation of the STING pathway elevates the interferon-ß level and synergizes with SDT to enhance the anti-tumor response. Therefore, this work proposes a universal approach for spatiotemporal regulation of cancer sono-immunotherapy.


Assuntos
Glutationa , Neoplasias , Humanos , Morte Celular Imunogênica , Imunoterapia , Polímeros , Microambiente Tumoral , Neoplasias/terapia , Linhagem Celular Tumoral
15.
Sci Bull (Beijing) ; 68(10): 1069-1085, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37169612

RESUMO

The proteolysis targeting chimeras (PROTACs) approach has attracted extensive attention in the past decade, which represents an emerging therapeutic modality with the potential to tackle disease-causing proteins that are historically challengeable for conventional small molecular inhibitors. PROTAC harnesses the endogenic E3 ubiquitin ligase to degrade protein of interest (POI) via ubiquitin-proteasome system in a cycle-catalytic manner. The event-driven pharmacology of PROTAC is poised to pursue those targets that are conventionally undruggable, which enormously extends the space of drug development. Furthermore, PROTAC has the potential to address drug resistance of small molecular inhibitors by degrading the whole POI. Nevertheless, PROTACs display high-efficiency and always-on properties to degrade POI, they may cause severe side effects due to an "on-target but off-tissue" protein degradation profile at the undesirable tissues and cells. Given that, the stimuli-activatable PROTAC prodrugs have been recently exploited to confine precise protein degradation of the favorable targets, which may conquer the adverse effects of PROTAC due to uncontrollable protein degradation. Herein, we summarized the cutting-edge advances of the stimuli-activatable PROTAC prodrugs. We also overviewed the progress of PROTAC prodrug-based nanomedicine to improve PROTAC delivery to the tumors and precise POI degradation in the targeted cells.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Neoplasias/tratamento farmacológico
16.
Angew Chem Int Ed Engl ; 62(30): e202305200, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37194682

RESUMO

Immunotherapy has provided a promising modality for cancer treatment, while it often has the issues of limited response rates and potential off-target side effects in clinical practice. We herein report the construction of semiconducting polymer pro-nanomodulators (SPpMs) with ultrasound (US)-mediated activatable pharmacological actions for deep-tissue sono-immunotherapy of orthotopic pancreatic cancer. Such SPpMs consist of a sonodynamic semiconducting polymer backbone grafted with poly(ethylene glycol) chains linked with two immunomodulators (a programmed death-ligand 1 blocker and an indoleamine 2,3-dioxygenase inhibitor) via a singlet oxygen (1 O2 )-cleavable segment. In view of the excellent sonodynamic property of the semiconducting polymer core, SPpMs enable effective generation of 1 O2 under US treatment, even in a deep-tissue depth up to 12 cm. The generated 1 O2 not only ablates tumors via a sonodynamic effect and induces immunogenic cell death, but also destroys the 1 O2 -cleavable segments to allow in situ release of immunomodulators in tumors. This synergetic action results in boosted antitumor immune response via reversing two tumor immunosuppressive pathways. As such, SPpMs mediate deep-tissue sono-immunotherapy to completely eradicate orthotopic pancreatic cancer and effectively prevent tumor metastasis. Moreover, such an immune activation reduces the possibility of immune-related adverse events. This study thus provides a smart activatable nanoplatform for precise immunotherapy of deep-seated tumors.


Assuntos
Nanopartículas , Neoplasias , Neoplasias Pancreáticas , Humanos , Polímeros , Neoplasias/terapia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis , Imunoterapia , Linhagem Celular Tumoral , Neoplasias Pancreáticas
17.
ACS Nano ; 17(9): 8183-8194, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37122103

RESUMO

Photothermal immunotherapy is a combinational cancer therapy modality, wherein the photothermal process can noninvasively ablate cancer and efficiently trigger cancer immunogenic cell death to ignite antitumor immunity. However, cancer cells can resist the cytotoxic lymphocyte-mediated antitumor effect via expressing serine protease inhibitory proteins (serpins) to deactivate proteolytic immunoproteases. Herein, we report a smart polymer nanoagonist (SPND) with second near-infrared (NIR-II) phototherapeutic ablation and tumor-specific immunoprotease granzyme B (GrB) restimulation for cancer photothermal immunotherapy. SPND has a semiconducting polymer backbone grafted with a small-molecule inhibitor of serpinB9 (Sb9i) via a glutathione (GSH)-cleavable linker. Once in the tumor, Sb9i can be specifically liberated from SPND to inhibit serpinB9, restimulating the activity of GrB to enhance cancer immunotherapy. Moreover, SPND induces photothermal therapy for direct tumor ablation and immunogenic cancer cell death (ICD) under NIR-II photoirradiation. Therefore, such a smart nanoagonist represents a way toward combination photothermal immunotherapy (PTI).


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Fototerapia , Neoplasias/terapia , Antineoplásicos/farmacologia , Terapia Fototérmica , Imunoterapia , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
18.
Angew Chem Int Ed Engl ; 62(24): e202303982, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37050864

RESUMO

There is growing interest in the development of chemiluminescence (CL) probes for phototheranostics because of their minimized tissue autofluorescence. However, due to a lack of near-infrared (NIR)-absorbing chemiluminophores, current probes for NIR CL-guided phototherapy are based on nanoparticles made up of multiple components. We report bright unimolecular chemiluminophores with NIR absorptions and emissions, long CL half-lives and ideal photodynamic efficiency. One luminophore is modified into an activatable probe, DBPOL , with a turn-on CL signal and photodynamic activity that are specific to a cancer biomarker. The highly sensitive DBPOL allows CL-guided photodynamic therapy which completely inhibits tumor growth and lung metastasis in mouse models, and can be applied for noninvasive monitoring of lung metastasis. We provide molecular guidelines for NIR-absorbing CL probes for imaging-guided phototherapy.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Animais , Camundongos , Fototerapia , Diagnóstico por Imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico
19.
Angew Chem Int Ed Engl ; 62(26): e202301625, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099322

RESUMO

NETosis, the peculiar type of neutrophil death, plays important roles in pro-tumorigenic functions and inhibits cancer immunotherapy. Non-invasive real-time imaging is thus imperative for prognosis of cancer immunotherapy yet remains challenging. Herein, we report a Tandem-locked NETosis Reporter 1 (TNR1 ) that activates fluorescence signals only in the presence of both neutrophil elastase (NE) and cathepsin G (CTSG) for the specific imaging of NETosis. In the aspect of molecular design, the sequence of biomarker-specific tandem peptide blocks can largely affect the detection specificity towards NETosis. In live cell imaging, the tandem-locked design allows TNR1 to differentiate NETosis from neutrophil activation, while single-locked reporters fail to do so. The near-infrared signals from activated TNR1 in tumor from living mice were consistent with the intratumoral NETosis levels from histological results. Moreover, the near-infrared signals from activated TNR1 negatively correlated with tumor inhibition effect after immunotherapy, thereby providing prognosis for cancer immunotherapy. Thus, our study not only demonstrates the first sensitive optical reporter for noninvasive monitoring of NETosis levels and evaluation of cancer immunotherapeutic efficacy in tumor-bearing living mice, but also proposes a generic approach for tandem-locked probe design.


Assuntos
Armadilhas Extracelulares , Neoplasias , Animais , Camundongos , Armadilhas Extracelulares/fisiologia , Neutrófilos/fisiologia , Biomarcadores , Corantes , Prognóstico , Imunoterapia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
20.
Nat Biomed Eng ; 7(3): 281-297, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36941352

RESUMO

Tracking the immune microenvironment of tumours is essential for understanding the mechanisms behind the effectiveness of cancer immunotherapies. Molecular imaging of tumour-infiltrating leukocytes (TILs) can be used to non-invasively monitor the tumour immune microenvironment, but current imaging agents do not distinguish TILs from leukocytes resident in other tissues. Here we report a library of activatable molecular probes for the imaging, via near-infrared fluorescence, of specific TILs (including M1 macrophages, cytotoxic T lymphocytes and neutrophils) in vivo in real time and also via excreted urine, owing to the probes' renal clearance. The fluorescence of the probes is activated only in the presence of both tumour and leukocyte biomarkers, which allows for the imaging of populations of specific TILs in mouse models of cancers with sensitivities and specificities similar to those achieved via flow-cytometric analyses of biopsied tumour tissues. We also show that the probes enable the non-invasive evaluation of the immunogenicity of different tumours, the dynamic monitoring of responses to immunotherapies and the accurate prediction of tumour growth under various treatments.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias , Animais , Camundongos , Neoplasias/diagnóstico por imagem , Linfócitos T Citotóxicos , Leucócitos , Citometria de Fluxo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA