Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1704: 464116, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37290349

RESUMO

Flavonoids are a class of natural polyphenolic compounds with great health benefits, and the development of methods for their analysis is of continuing interest. In this work, apigenin, kaempferol and formononetin were selected as the typical representatives of flavone, flavonol and isoflavone, three subclasses of flavonoids. Fluorescence studies revealed that tetraborate complexation could significantly sensitize the weak intrinsic fluorescence of flavonoids in solution, with a maximum of 137-fold for kaempferol. Subsequently, an integrated strategy of derivatization and separation was proposed for the universal analysis of flavonoids by capillary electrophoresis (CE) with 405 nm laser-induced fluorescence (LIF) detection. Using a running buffer consisting of 20 mM sodium tetraborate, 10 mM SDS and 10% methanol (pH 8.5), the dynamic derivatization was realized in the capillary, and the baseline separation was achieved within 10 min, with the detection limits of 0.92-35.46 nM (S/N=3) for the total of 9 flavonoids. The developed CE-LIF method was employed to the quantitative analysis of some flavonoids in Medicago sativa (alfalfa) plants and granulated alfalfa with the recoveries of 80.55-94.25%. Combined with the principal component analysis, the developed method was successfully applied to the non-destructive distinction of single seed for alfalfa and Melilotus officinalis (sweet clover), two forage grass seeds with very similar apparent morphology. Furthermore, this method was used to continuously monitor the substance metabolism during the soaking process at the level of single seed.


Assuntos
Medicago sativa , Melilotus , Quempferóis , Fluorescência , Eletroforese Capilar/métodos , Flavonoides/análise , Sementes/química , Lasers
2.
ACS Appl Mater Interfaces ; 14(34): 39441-39450, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993697

RESUMO

NaCl has been successfully used as a template for the synthesis of 2D nanomaterials, but it is seldom used for the construction of flat small organic molecules. Herein, a simple, low-cost, and highly efficient synthesis of phenazines with planar main frames, such as 5-phenyl-5,14-dihydro-5,7,12,14-tetraazapentacene, in the presence of NaCl micro-crystal as a kind of molecular mold is described. The reactants were mixed with NaCl powder and heated to 320 °C for 5 min. Yields >90% were readily achieved after a simple precipitation in water. The effectiveness of NaCl crystal as a mold with HCl was confirmed by comparison with common inorganic salts, SiO2, and γ-Al2O3 with HCl together with combinations including NaNO3 + HNO3, Na2SO4 + H2SO4, NaH2PO4 + H3PO4, and NaH2PO4 + polyphosphoric acid. The mechanism was deduced with the aid of computer simulation, which confirms the stabilization of 5,14-dihydro-5,7,12,14-tetraazapentacene by the NaCl surface. DMSO solution of a product, 1,3-dihydro-imidazo[4,5-b]phenazin-2-one, showed enhanced fluorescence in H2O, and it was used as a fluorescent probe for pH and Hg2+. A full-color material was prepared by mixing precursors of epoxy resin and phenazines, and its fluorescent color could be adjusted by the ratio of phenazines.

3.
Anal Chem ; 94(33): 11500-11507, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943850

RESUMO

The development of new technologies for the separation, selection, and isolation of microparticles such as rare target cells, circulating tumor cells, cancer stem cells, and immune cells has become increasingly important in the last few years. Microparticle separation technologies are usually applied to the analysis of disease-associated cells, but these procedures often face a cell separation problem that is often insufficient for single specific cell analyses. To overcome these limitations, a highly accurate size-based microparticle separation technique, herein called "rotating magnetic chromatography", is proposed in this work. Magnetic nanoparticles, placed in a microfluidic separation channel, are forced to move in well-defined trajectories by an external magnetic field, colliding with microparticles that are in this way separated on the basis of their dimensions with high accuracy and reproducibility. The method was optimized by using fluorescein isothiocyanate-modified polystyrene particles (chosen as a reference standard) and then applied to the analysis of cancer cells like Hep-3B and SK-Hep-1, allowing their fast and high-resolution chromatographic separation as a function of their dimensions. Due to its unmatched sub-micrometer cell separation capabilities, RMC can be considered a break-through technique that can unlock new perspectives in different scientific fields, that is, in medical oncology.


Assuntos
Cromatografia , Magnetismo , Separação Celular , Fenômenos Magnéticos , Poliestirenos/química , Reprodutibilidade dos Testes
4.
J Agric Food Chem ; 67(28): 8053-8060, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31276393

RESUMO

The development of analytical methods for acrylamide formed during food processing is of great significance for food safety, but limited by its inherent characteristics, the analysis of acrylamide is a continuing challenge. In this study, an efficient derivatization strategy for acrylamide based on thiol-ene click reaction with cysteine as derivatization reagent was proposed, and the resulting derivative was then analyzed by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). After systematic investigation including catalyst dosage (0-20 mM), reaction temperature (30-90 °C) and time (1-60 min), and cysteine concentration (0.2-3.6 mM), acrylamide could be efficiently labeled by 2.0 mM cysteine at 70 °C for 10 min using 4 mM n-butylamine as catalyst. Application of 10 mM triethylamine as separation buffer, the labeled acrylamide was analyzed within 2.0 min, and the relative standard deviations of migration time and peak area were less than 0.84% and 5.6%, indicating good precision. The C4D signal of acrylamide derivative showed a good linear relationship with acrylamide concentration in the range of 7-200 µM with the correlation coefficient of 0.9991. The limit of detection and limit of quantification were calculated to be 0.16 µM and 0.52 µM, respectively. Assisted further by the QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample pretreatment, the developed derivatization strategy and subsequent CE-C4D method were successfully applied for the determination of acrylamide in potato products.


Assuntos
Acrilamida/análise , Química Click/métodos , Eletroforese Capilar/métodos , Solanum tuberosum/química , Culinária , Cisteína/química , Temperatura Alta , Limite de Detecção , Tubérculos/química
5.
Talanta ; 203: 83-89, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202353

RESUMO

An integrated immunodetection platform employing a simple, reusable, centrifugal microchannel array chip and a smartphone as detection unit was developed. The applicability of the platform to the detection of HIV p24 antigen was demonstrated. The microchip was made of polycarbonate and contained 4 × 8 zigzag microchannels. After the monoclonal antibody of HIV p24 was adsorbed onto the channel surfaces, HIV p24 was introduced into the microchannel to react with the antibody. A biotin linked polyclonal antibody was then brought in to react with HIV p24, and SP80 (containing streptavidin and horseradish peroxidase) was introduced to react with the biotin. Finally, a solution containing 3,3',5,5'-tetramethylbenzidine and other reagents was passed through the above channels, horseradish peroxidase catalyzed the oxidation of tetramethylbenzidine (to 3,3',5,5'- tetramethylbenzidine diamine) forming a dark color. The color intensity, indicating HIV p24 antigen quantity, was then photographed via a smartphone, and the color of each microchannel was processed via a computer to determine the HIV p24 antigen concentration. Under the optimized conditions, limits of detection (LODs) of 0.17 ng/ml and 0.11 ng/ml were obtained for p24 antigen in a buffer solution and human serum, respectively. Channel washing/rinsing was implemented via a centrifugal force. An economic portable centrifugal device that could accommodate up to 4 microchips was assembled, and multi-step solution loading and rinsing involved in this sandwich immunoassay were performed conveniently. The microchip could be reused after a simple regeneration process. The low-cost polycarbonate microchip and centrifugal device together with the simple but efficient operation make the method a promising tool for HIV screening in resource limited areas.


Assuntos
Proteína do Núcleo p24 do HIV/análise , Dispositivos Lab-On-A-Chip , Smartphone , Animais , Anticorpos Monoclonais Murinos/imunologia , Armoracia/enzimologia , Centrifugação , Ensaio de Imunoadsorção Enzimática/métodos , Desenho de Equipamento , Reutilização de Equipamento , HIV/química , Proteína do Núcleo p24 do HIV/imunologia , Peroxidase do Rábano Silvestre/química , Humanos , Limite de Detecção , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Estudo de Prova de Conceito , Coelhos
6.
J Hazard Mater ; 248-249: 268-75, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23385207

RESUMO

Rapid analysis of trace amount of aromatic amines in environmental samples and daily necessities has attracted considerable attentions because some of them are strongly toxic and carcinogenic. In this study, fast and efficient electrophoretic separation and sensitive determination of 5 banned aromatic amines were explored for practical analysis using disposable plastic microchips combined with a low-cost laser-induced fluorescence detector. The effect of running buffer and its additive was systematically investigated. Under the selected condition, 5 fluorescein isothiocyanate labeled aromatic amines could be baseline separated within 90s by using a 10mmol/L borate buffer containing 2% (w/v) hydroxypropyl cellulose. Calibration curves of peak areas vs. concentrations were linear up to 40 or 120µmol/L for different analytes and limits of detection were in a range of 1-3nmol/L. Theoretical plate numbers of 6.8-8.5×10(5)/m were readily achieved. The method exhibited good repeatability, relative standard deviations (n=5) of peak areas and migration times were no more than 4.6% and 0.9%, respectively. The established method was successfully applied in the quantitative analysis of these banned aromatic amines in real samples of waste water and textile, recoveries of added standards were 85-110%.


Assuntos
Aminas/análise , Rios/química , Têxteis/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Boratos/química , Eletroforese em Microchip , Concentração de Íons de Hidrogênio , Resíduos Industriais , Plásticos
7.
J Chromatogr A ; 1218(52): 9422-7, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22099226

RESUMO

An ethylene glycol solution was used as the electrophoretic running buffer in unmodified cyclic olefin copolymer (COC) microchips to minimize the interactions between the analytes and the hydrophobic walls of the plastic microchannels, enhance the resolution of the analytes and eliminate the uncontrollable dispersion caused by uneven liquid levels and non-uniform surfaces of the separation channels. Five amino acids that were labeled with fluorescein isothiocyanate (FITC) were used as model analytes to examine the separation efficiency. The effects of ethylene glycol concentration, pH and sodium tetraborate concentration were systematically investigated. The five FITC-labeled amino acids were effectively resolved using a COC microchip with an effective length of 2.5 cm under optimum conditions, which included using a running buffer of 20 mmol/L sodium tetraborate in ethylene glycol:water (80:20, v/v), pH 6.7. A theoretical plate number of 4.8 × 10(5)/m was obtained for aspartic acid. The system exhibited good repeatability, and the relative standard deviations (n=5) of the peak areas and migration times were no more than 3.4% and 0.7%, respectively. Furthermore, the system was successfully applied to elucidate these five amino acids in human saliva.


Assuntos
Cicloparafinas/química , Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Etilenoglicol/química , Aminoácidos/análise , Boratos , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Saliva/química
8.
Ann Chim ; 95(9-10): 695-701, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16342741

RESUMO

A G4.0 poly(propyleneimine) dendrimer immobilized silica gel (PPID-SG) was prepared with a divergent approach from gamma-aminopropyl silica gel (APSG) by repeating the reactions: 1) cyanoethylation of -NH2 and 2) reduction of -CN. Then it was successfully applied as the microcolumn packing for the on-line flow-injection (FI) preconcentration and separation and flame atomic absorption spectrometry (FAAS) determination of Pt. A limit of detection (LOD) of 0.014 microg/mL was obtained when 0.5 microg/mL Pt in chloride acid of PH = 3 was preconcentrated with a sample flow rate of 4.6 mL/min for 60s and the relative standard deviation (RSD) was 2.65%. Coexisting metal ions with concentration of 5.0 mg/mL and anion ions of 20.0 mg/ml have no interference in the determination of Pt. The proposed method was successfully applied to the determination of Pt in nickel alloy and anode slime samples.


Assuntos
Dendrímeros/síntese química , Análise de Injeção de Fluxo/métodos , Platina/análise , Polipropilenos/química , Dióxido de Silício/química , Espectrofotometria Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA