Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2402180121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717859

RESUMO

Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Dinamina II , Proteínas Supressoras de Tumor , Dinamina II/metabolismo , Dinamina II/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Membrana Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Dinâmica Mitocondrial/fisiologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo
2.
Curr Protoc Protein Sci ; 101(1): e110, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32603530

RESUMO

Peripheral membrane proteins participate in numerous biological pathways. Thus, methods to analyze their membrane-binding characteristics have become important. In this report, we detail protocols for the synthesis and utilization of a photoactivable fluorescent lipid as a reporter to monitor membrane binding of proteins. The assay, referred to as proximity-based labeling of membrane-associated proteins (PLiMAP), is based on UV activation of a fluorescent lipid reporter, which in turn crosslinks with proteins bound to membranes and renders them fluorescent. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of BODIPY-diazirine phosphatidylethanolamine (BDPE) Basic Protocol 2: Preparation of BDPE-containing liposomes Basic Protocol 3: Performing PLiMAP with a candidate protein Basic Protocol 4: Quantitation of liposome-binding properties of the candidate protein from analyzing in-gel fluorescence Support Protocol: Purification of GST-2×P4M domain of SidM protein.


Assuntos
Compostos de Boro/química , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência/métodos , Animais , Membrana Celular/química , Diazometano/química , Humanos , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Processos Fotoquímicos , Ligação Proteica
3.
Protein Sci ; 29(6): 1321-1330, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32223019

RESUMO

Several cellular processes rely on a cohort of dedicated proteins that manage tubulation, fission, and fusion of membranes. A notably large number of them belong to the dynamin superfamily of proteins. Among them is the evolutionarily conserved group of ATP-binding Eps15-homology domain-containing proteins (EHDs). In the two decades since their discovery, EHDs have been linked to a range of cellular processes that require remodeling or maintenance of specific membrane shapes such as during endocytic recycling, caveolar biogenesis, ciliogenesis, formation of T-tubules in skeletal muscles, and membrane resealing after rupture. Recent work has shed light on their structure and the unique attributes they possess in linking ATP hydrolysis to membrane remodeling. This review summarizes some of these recent developments and reconciles intrinsic protein functions to their cellular roles.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Trifosfato de Adenosina/química , Animais , Humanos , Hidrólise , Domínios Proteicos , Proteínas de Transporte Vesicular/química
4.
Nat Commun ; 9(1): 5187, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518883

RESUMO

Endocytic and recycling pathways generate cargo-laden transport carriers by membrane fission. Classical dynamins, which generate transport carriers during endocytosis, constrict and cause fission of membrane tubes in response to GTP hydrolysis. Relatively, less is known about the ATP-binding Eps15-homology domain-containing protein1 (EHD1), a dynamin family member that functions at the endocytic-recycling compartment. Here, we show using cross complementation assays in C. elegans that EHD1's membrane binding and ATP hydrolysis activities are necessary for endocytic recycling. Further, we show that ATP-bound EHD1 forms membrane-active scaffolds that bulge tubular model membranes. ATP hydrolysis promotes scaffold self-assembly, causing the bulge to extend and thin down intermediate regions on the tube. On tubes below 25 nm in radius, such thinning leads to scission. Molecular dynamics simulations corroborate this scission pathway. Deletion of N-terminal residues causes defects in stable scaffolding, scission and endocytic recycling. Thus, ATP hydrolysis-dependent membrane remodeling links EHD1 functions to endocytic recycling.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Endocitose , Motivos de Aminoácidos , Animais , Transporte Biológico , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Hidrólise , Deleção de Sequência
5.
Biochem Biophys Res Commun ; 339(2): 661-6, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16310160

RESUMO

Leishmania donovani is an obligate intracellular parasite that infects macrophages of the vertebrate host resulting in visceral leishmaniasis in humans, a major public health problem worldwide. The molecular mechanisms involved in internalization of Leishmania are still poorly characterized. We report here that cholesterol sequestration by the sterol-binding antifungal polyene antibiotic nystatin markedly inhibits binding and entry of non-opsonized L. donovani promastigotes into macrophages. Interestingly, these effects are not observed when serum-opsonized L. donovani are used for infectivity studies thus pointing the essential role of cholesterol in mediating entry of the parasite via the non-opsonic pathway. Based on our earlier results where leishmanial infectivity was shown to be sensitive to physical depletion of cholesterol from macrophages, these results indicate that the mere sequestration of cholesterol in the host plasma membrane is sufficient to inhibit the binding and entry of non-opsonized L. donovani. These results represent the first report on the effect of a cholesterol-sequestering agent on the entry of Leishmania parasites to host macrophages. More importantly, these findings offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies to treat leishmaniasis.


Assuntos
Antibacterianos/farmacologia , Colesterol/metabolismo , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Nistatina/metabolismo , Nistatina/farmacologia , Animais , Linhagem Celular , Cinética , Camundongos
6.
Mol Biochem Parasitol ; 133(2): 145-52, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14698427

RESUMO

Leishmania donovani is an obligate intracellular parasite that infects macrophages of the vertebrate host, resulting in visceral leishmaniasis in humans, which is usually fatal if untreated. The molecular mechanisms involved in host-parasite interaction leading to attachment on the cell surface and subsequent internalization of the parasite are poorly characterized. Cholesterol is a major constituent of eukaryotic membranes and plays a crucial role in cellular membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains in membranes. Recent observations suggest that cholesterol exerts many of its actions by maintaining a specialized type of membrane domain, termed "lipid rafts", in a functional state. Lipid rafts are enriched in cholesterol and sphingolipids, and have been thought to act as platforms through which signal transduction events are coordinated and pathogens gain entry to infect host cells. We report here that cholesterol depletion from macrophage plasma membranes using methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction in the extent of leishmanial infection. Furthermore, the reduction in the ability of the parasite to infect host macrophages can be reversed upon replenishment of cell membrane cholesterol. Interestingly, these effects were not observed when parasites were serum-opsonized, indicating a specific requirement of cholesterol to mediate entry via the non-opsonic pathway. Importantly, we show that entry of Escherichia coli remains unaffected by cholesterol depletion. Our results therefore point to the specific requirement of plasma membrane cholesterol in efficient attachment and internalization of the parasite to macrophage cells leading to a productive infection. More importantly, these results are significant in developing novel therapeutic strategies to tackle leishmaniasis.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Leishmania donovani/patogenicidade , Macrófagos/parasitologia , Microdomínios da Membrana/metabolismo , beta-Ciclodextrinas , Animais , Adesão Celular , Linhagem Celular , Membrana Celular/química , Ciclodextrinas/farmacologia , Citoplasma/parasitologia , Leishmaniose Visceral/parasitologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA