Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancer Immunol Res ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869181

RESUMO

Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer that emerges as tumors become resistant to hormone therapies or, rarely, arises de novo in treatment-naïve patients. The urgent need for effective therapies against NEPC is hampered by the limited knowledge of the biology governing this lethal disease. Based on our prior observations in the TRAMP spontaneous prostate cancer model, in which the genetic depletion of either mast cells (MCs) or the matricellular protein osteopontin (OPN) increases NEPC frequency, we tested the hypothesis that MCs can restrain NEPC through OPN production, using in vitro co-cultures between murine or human tumor cell lines and MCs, and in vivo experiments. We unveiled a role for the intracellular isoform of OPN (iOPN), so far neglected compared to the secreted isoform. Mechanistically, we unraveled that iOPN promotes TNF production in MCs via the TLR2/TLR4-MyD88 axis, specifically triggered by the encounter with NEPC cells. We found that MC-derived TNFin turn, hampered the growth of NEPC. We then identified the protein syndecan-1 (SDC1) as the NEPC-specific TLR2/TLR4 ligand that triggered this pathway. Interrogating published single-cell RNA-sequencing data we validated this mechanism in a different mouse model. Translational relevance of the results was provdied by in silco analyses of available human NEPC datasets, and by immunofluorescence on patient-derived adenocarcinoma and NEPC lesions. Overall, our results show that MCs actively inhibit NEPC, paving the way for innovative MC-based therapies for this fatal tumor. We also highlight SDC1 as a potential biomarker for incipient NEPC.

2.
Front Immunol ; 13: 835348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251027

RESUMO

Mast cells (MCs) are tissue-resident, long lived innate immune cells with important effector and immunomodulatory functions. They are equipped with an eclectic variety of receptors that enable them to sense multiple stimuli and to generate specific responses according on the type, strength and duration of the stimulation. Several studies demonstrated that myeloid cells can retain immunological memory of their encounters - a process termed 'trained immunity' or 'innate immune memory'. As MCs are among the one of first cells to come into contact with the external environment, it is possible that such mechanisms of innate immune memory might help shaping their phenotype and effector functions; however, studies on this aspect of MC biology are still scarce. In this manuscript, we investigated the ability of MCs primed with different stimuli to respond to a second stimulation with the same or different ligands, and determined the molecular and epigenetic drivers of these responses. Our results showed that, while the stimulation with IgE and ß-glucan failed to induce either tolerant or trained phenotypes, LPS conditioning was able to induce a profound and long-lasting remodeling of the signaling pathways involved in the response against LPS or fungal pathogens. On one side, LPS induced a strong state of unresponsiveness to secondary LPS stimulation due to the impairment of the PI3K-AKT signaling pathway, which resulted in the reduced activation of NF-κB and the decreased release of TNF-α and IL-6, compared to naïve MCs. On the other side, LPS primed MCs showed an increased release of TNF-α upon fungal infection with live Candida albicans, thus suggesting a dual role of LPS in inducing both tolerance and training phenotypes depending on the secondary challenge. Interestingly, the inhibition of HDAC during LPS stimulation partially restored the response of LPS-primed MCs to a secondary challenge with LPS, but failed to revert the increased cytokine production of these cells in response to C. albicans. These data indicate that MCs, as other innate immune cells, can develop innate immune memory, and that different stimulatory environments can shape and direct MC specific responses towards the dampening or the propagation of the local inflammatory response.


Assuntos
Lipopolissacarídeos , Mastócitos , Citocinas/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Front Immunol ; 12: 622001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737929

RESUMO

A relevant fraction of castration-resistant prostate cancers (CRPC) evolve into fatal neuroendocrine (NEPC) tumors in resistance to androgen deprivation and/or inhibitors of androgen receptor pathway. Therefore, effective drugs against both CRPC and NEPC are needed. We have previously described a dual role of mast cells (MCs) in prostate cancer, being capable to promote adenocarcinoma but also to restrain NEPC. This finding suggests that a molecule targeting both MCs and NEPC cells could be effective against prostate cancer. Using an in silico drug repurposing approach, here we identify the antiepileptic drug levetiracetam as a potential candidate for this purpose. We found that the protein target of levetiracetam, SV2A, is highly expressed by both NEPC cells and MCs infiltrating prostate adenocarcinoma, while it is low or negligible in adenocarcinoma cells. In vitro, levetiracetam inhibited the proliferation of NEPC cells and the degranulation of MCs. In mice bearing subcutaneous tumors levetiracetam was partially active on both NEPC and adenocarcinoma, the latter effect due to the inhibition of MMP9 release by MCs. Notably, in TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice subjected to surgical castration to mimic androgen deprivation therapy, levetiracetam reduced onset and frequency of both high grade prostatic intraepithelial neoplasia, adenocarcinoma and NEPC, thus increasing the number of cured mice showing only signs of tumor regression. Our results demonstrate that levetiracetam can directly restrain NEPC development after androgen deprivation, and that it can also block adenocarcinoma progression through the inhibition of some MCs functions. These findings open the possibility of further testing levetiracetam for the therapy of prostate cancer or of MC-mediated diseases.


Assuntos
Anticonvulsivantes/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Levetiracetam/uso terapêutico , Mastócitos/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Animais , Degranulação Celular/efeitos dos fármacos , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Reposicionamento de Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais , Células Tumorais Cultivadas
4.
Methods Mol Biol ; 2270: 61-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479893

RESUMO

IL-10 is the best known and most studied anti-inflammatory cytokine and, in the last 20 years, it has acquired even greater fame as it has been associated with the regulatory phenotype of B cells. Indeed, although great efforts have been made to find a unique marker, to date IL-10 remains the main way to follow both murine and human regulatory B cells, hence the need of precise and reproducible methods to identify and purify IL-10-producing B cells for both functional and molecular downstream assays. In this chapter, we present our protocols to isolate these cells from the murine spleen and peritoneum and from human peripheral blood. Since the production of IL-10 by B cells is not only a weapon to counteract the adverse effect of pro-inflammatory cytokines but also a response to cellular activation, we focused on those B cells that are prone to IL-10 production and detectable following a short-term stimulation with phorbol-12-myristate-13-acetate, ionomycin, and lipopolysaccharide (murine system) or CpG (human system).


Assuntos
Subpopulações de Linfócitos B/citologia , Linfócitos B Reguladores/citologia , Separação Celular/métodos , Animais , Subpopulações de Linfócitos B/imunologia , Citocinas/imunologia , Expressão Gênica/genética , Expressão Gênica/imunologia , Humanos , Interleucina-10/metabolismo , Ionomicina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Ésteres de Forbol/farmacologia , Baço/citologia , Acetato de Tetradecanoilforbol/farmacologia
5.
Eur J Immunol ; 51(2): 445-458, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32920851

RESUMO

B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-derived B cells populate the intestine and communicate with MCs in physiological conditions and during inflammation, we further explored this interplay through the use of co-cultures. We show that MCs finely regulate different aspects of splenic B cell biology while peritoneal B cells are unresponsive to the supporting effects provided by MCs. Interestingly, peritoneal B cells induce a pro-inflammatory skewing in MCs, characterized by increased ST2 and TNF-α expression. Altogether, this study uncovers the versatility of the B/MC liaison and highlights key aspects for the resolution of intestinal inflammation.


Assuntos
Linfócitos B/metabolismo , Colo/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Mastócitos/imunologia , Animais , Colite/imunologia , Colo/microbiologia , Sulfato de Dextrana/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/imunologia
6.
DNA Repair (Amst) ; 82: 102675, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31450087

RESUMO

The pathogenesis of colorectal cancer (CRC) involves different mechanisms, such as genomic and microsatellite instabilities. Recently, a contribution of the base excision repair (BER) pathway in CRC pathology has been emerged. In this context, the involvement of APE1 in the BER pathway and in the transcriptional regulation of genes implicated in tumor progression strongly correlates with chemoresistance in CRC and in more aggressive cancers. In addition, the APE1 interactome is emerging as an important player in tumor progression, as demonstrated by its interaction with Nucleophosmin (NPM1). For these reasons, APE1 is becoming a promising target in cancer therapy and a powerful prognostic and predictive factor in several cancer types. Thus, specific APE1 inhibitors have been developed targeting: i) the endonuclease activity; ii) the redox function and iii) the APE1-NPM1 interaction. Furthermore, mutated p53 is a common feature of advanced CRC. The relationship between APE1 inhibition and p53 is still completely unknown. Here, we demonstrated that the inhibition of the endonuclease activity of APE1 triggers p53-mediated effects on cell metabolism in HCT-116 colon cancer cell line. In particular, the inhibition of the endonuclease activity, but not of the redox function or of the interaction with NPM1, promotes p53 activation in parallel to sensitization of p53-expressing HCT-116 cell line to genotoxic treatment. Moreover, the endonuclease inhibitor affects mitochondrial activity in a p53-dependent manner. Finally, we demonstrated that 3D organoids derived from CRC patients are susceptible to APE1-endonuclease inhibition in a p53-status correlated manner, recapitulating data obtained with HCT-116 isogenic cell lines. These findings suggest the importance of further studies aimed at testing the possibility to target the endonuclease activity of APE1 in CRC.


Assuntos
Neoplasias do Colo/patologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Metanossulfonato de Metila/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação , Nucleofosmina , Proteína Supressora de Tumor p53/genética
7.
Eur J Immunol ; 49(8): 1213-1225, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034584

RESUMO

Among the family of regulatory B cells, the subset able to produce interleukin-10 (IL-10) is the most studied, yet its biology is still a matter of investigation. The DNA methylation profiling of the il-10 gene locus revealed a novel epigenetic signature characterizing murine B cells ready to respond through IL-10 synthesis: a demethylated region located 4.5 kb from the transcription starting site (TSS), that we named early IL10 regulatory region (eIL10rr). This feature allows to distinguish B cells that are immediately prone and developmentally committed to IL-10 production from those that require a persistent stimulation to exert an IL-10-mediated regulatory function. These late IL-10 producers are instead characterized by a delayed IL10 regulatory region (dIL10rr), a partially demethylated DNA portion located 9 kb upstream from the TSS. A demethylated region was also found in human IL-10-producing B cells and, very interestingly, in some B-cell malignancies, such as chronic lymphocytic leukemia and mantle cell lymphoma, characterized by an immunosuppressive microenvironment. Our findings define murine and human regulatory B cells as an epigenetically controlled functional state of mature B cell subsets and open a new perspective on IL-10 regulation in B cells in homeostasis and disease.


Assuntos
Subpopulações de Linfócitos B/fisiologia , Linfócitos B Reguladores/fisiologia , Interleucina-10/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Linfoma de Célula do Manto/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Diferenciação Celular , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Tolerância Imunológica , Imunidade Humoral , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
8.
J Biol Chem ; 294(13): 5198-5207, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30705092

RESUMO

The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1's redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1's redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1's endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1's redox function in the control of cancer growth through modulation of the IgA CSR process.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Imunoglobulina A/genética , Switching de Imunoglobulina , Animais , Linfócitos B/metabolismo , Linhagem Celular , Reparo do DNA , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Transdução de Sinais
9.
Front Immunol ; 9: 2829, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555491

RESUMO

Mast cells (MCs) are long-lived immune cells widely distributed at mucosal surfaces and are among the first immune cell type that can get in contact with the external environment. This study aims to unravel the mechanisms of reciprocal influence between mucosal MCs and Candida albicans as commensal/opportunistic pathogen species in humans. Stimulation of bone marrow-derived mast cells (BMMCs) with live forms of C. albicans induced the release of TNF-α, IL-6, IL-13, and IL-4. Quite interestingly, BMMCs were able to engulf C. albicans hyphae, rearranging their α-tubulin cytoskeleton and accumulating LAMP1+ vesicles at the phagocytic synapse with the fungus. Candida-infected MCs increased macrophage crawling ability and promoted their chemotaxis against the infection. On the other side, resting MCs inhibited macrophage phagocytosis of C. albicans in a contact-dependent manner. Taken together, these results indicate that MCs play a key role in the maintenance of the equilibrium between the host and the commensal fungus C. albicans, limiting pathological fungal growth and modulating the response of resident macrophages during infections.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Macrófagos/imunologia , Mastócitos/imunologia , Fagocitose , Animais , Candidíase/patologia , Citocinas/imunologia , Feminino , Proteínas de Membrana Lisossomal/imunologia , Macrófagos/fisiologia , Masculino , Mastócitos/patologia
10.
Cancer Immunol Res ; 6(5): 552-565, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29523597

RESUMO

Immunotherapy, including the use of checkpoint inhibitors, is a potent therapeutic approach for some cancers, but has limited success with prostate tumors, in which immune suppression is instigated by the tumor. The immunosuppressive capacity of mast cells, which promote adenocarcinoma development in the prostate, prompted our investigation on whether mast cells promote tolerance to SV40 Large-T antigen, the transforming oncogene in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. The incidence of adenocarcinoma was reduced in the offspring of a cross between TRAMP mice and mast cell-deficient KitWsh mice. TRAMP mice are tolerant to the SV40 Large T antigen, which is otherwise immunogenic in normal syngeneic B6 mice. Genetic ablation of mast cells in TRAMP mice restored their ability to mount a tumor-specific cytotoxic T-cell response. In KitWsh-TRAMP mice, the restored T-cell immunity correlated with the reduced activity of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC), along with their reduced expression of Arg1, Nos2, and Stat3 Having found that CD40L-expressing mast cells can interact in vivo with CD40-expressing PMN-MDSC, we then determined that only KitWsh-TRAMP mice reconstituted with mast cells expressing CD40L could restore PMN-MDSCs suppressive functions, T-cell unresponsiveness and adenocarcinoma development. Thus, mast cells have an immunoregulatory effect on PMN-MDSCs activity through CD40L-CD40 interaction, favoring immunosuppression and tumor onset. In prostate cancer patients, in silico analyses correlated poor clinical outcomes with high expression of genes related to mast cells and PMN-MDSCs. Cancer Immunol Res; 6(5); 552-65. ©2018 AACR.


Assuntos
Adenocarcinoma/terapia , Comunicação Celular/imunologia , Terapia de Imunossupressão , Mastócitos/fisiologia , Células Supressoras Mieloides/fisiologia , Neoplasias da Próstata/terapia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Células Cultivadas , Humanos , Terapia de Imunossupressão/métodos , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia
11.
Immunol Rev ; 282(1): 35-46, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431204

RESUMO

Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer.


Assuntos
Mastócitos/fisiologia , Triptases/metabolismo , Animais , Diferenciação Celular , Microambiente Celular , Homeostase , Humanos , Imunomodulação , Fenótipo
12.
Oncoimmunology ; 6(8): e1336593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919998

RESUMO

One of the most fascinating aspects of the immune system is its dynamism, meant as the ability to change and readapt according to the organism needs. Following an insult, we assist to the spontaneous organization of different immune cells which cooperate, locally and at distance, to build up an appropriate response. Throughout tumor progression, adaptations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion and metastasis to distal organs, but also to dramatic changes in the activity and composition of the immune system. In this work, we show the changes of the B-cell arm of the immune system following tumor progression in the ApcMin/+ model of colorectal cancer. Tumor macroenvironment leads to an increased proportion of total and IL-10-competent B cells in draining LNs while activates a differentiation route that leads to the expansion of IgA+ lymphocytes in the spleen and peritoneum. Importantly, serum IgA levels were significantly higher in ApcMin/+ than Wt mice. The peculiar involvement of IgA response in the adenomatous transformation had correlates in the gut-mucosal compartment where IgA-positive elements increased from normal mucosa to areas of low grade dysplasia while decreasing upon overt carcinomatous transformation. Altogether, our findings provide a snapshot of the tumor education of B lymphocytes in the ApcMin/+ model of colorectal cancer. Understanding how tumor macroenvironment affects the differentiation, function and distribution of B lymphocytes is pivotal to the generation of specific therapies, targeted to switching B cells to an anti-, rather than pro-, tumoral phenotype.

14.
Trends Immunol ; 38(9): 648-656, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28462845

RESUMO

Mast cells are evolutionarily ancient cells, endowed with a unique developmental, phenotypic, and functional plasticity. They are resident cells that participate in tissue homeostasis by constantly sampling the microenvironment. As a result of their large repertoire of receptors, they can respond to multiple stimuli and selectively release different types and amounts of mediator. Here, we present and discuss the recent mast cell literature, focusing on studies that demonstrate that mast cells are more than a switch that is turned 'off' when in the resting state and 'on' when in the degranulating state. We propose a new vision of mast cells in which, by operating in a 'rheostatic' manner, these cells finely modulate not only immune responses, but also the pathogenesis of several inflammatory disorders, including infection, autoimmunity, and cancer.


Assuntos
Imunidade Adaptativa , Microambiente Celular , Homeostase , Imunidade Inata , Mastócitos/imunologia , Animais , Humanos , Imunomodulação , Especificidade de Órgãos , Tolerância a Antígenos Próprios
15.
Nat Commun ; 8: 14017, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28090087

RESUMO

T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF.


Assuntos
Fibrose Cística/imunologia , Linfócitos/imunologia , Mastócitos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Fibrose Cística/genética , Feminino , Humanos , Imunidade Inata , Lactente , Interleucina-9/imunologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-kit/imunologia , Adulto Jovem
16.
J Allergy Clin Immunol ; 139(4): 1266-1274.e1, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27619824

RESUMO

BACKGROUND: Celiac disease (CD) is an immune-mediated disorder characterized by an accumulation of immune cells in the duodenal mucosa as a consequence of both adaptive and innate immune responses to undigested gliadin peptides. Mast cells (MCs) are innate immune cells that are a major source of costimulatory signals and inflammatory mediators in the intestinal mucosa. Although MCs have previously been associated with CD, functional studies have never been performed. OBJECTIVE: We aimed at evaluating the role of MCs in the pathogenesis of CD. METHODS: Intestinal biopsy specimens of patients with CD were scored according to the Marsh classification and characterized for leukocyte infiltration and MC distribution. Moreover, MC reactivity to gliadin and its peptides was characterized by using in vitro assays. RESULTS: Infiltrating MCs were associated with the severity of mucosal damage, and their numbers were increased in patients with higher Marsh scores. MCs were found to directly respond to nonimmunodominant gliadin fragments by releasing proinflammatory mediators. Immunohistochemical characterization of infiltrating MCs and the effects of gliadin peptides on intestinal MCs indicated an increase in proinflammatory MC function in advanced stages of the disease. This was also associated with increased neutrophil accumulation, the prevalence of M1 macrophages, and the severity of tissue damage. CONCLUSION: We provide a description of the progressive stages of CD, in which MCs are the hallmark of the inflammatory process. Thus the view of CD should be revised, and the contribution of MCs in the onset and progression of CD should be reconsidered in developing new therapeutic approaches.


Assuntos
Doença Celíaca/imunologia , Doença Celíaca/patologia , Mastócitos/imunologia , Animais , Degranulação Celular/imunologia , Progressão da Doença , Feminino , Imunofluorescência , Gliadina/imunologia , Humanos , Imuno-Histoquímica , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia
17.
Oncoimmunology ; 4(4): e1001232, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26137400

RESUMO

The instauration of an immunosuppressive microenvironment is a key event in cancer development and progression. Here, we discuss increasing evidences of the crosstalk between myeloid-derived suppressor cells (MDSCs) and mast cells (MCs) as a new fuel for the cancer immunosuppressive machinery.

18.
Cancer Immunol Res ; 3(1): 85-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351848

RESUMO

Inflammation plays crucial roles at different stages of tumor development and may lead to the failure of immune surveillance and immunotherapy. Myeloid-derived suppressor cells (MDSC) are one of the major components of the immune-suppressive network that favors tumor growth, and their interaction with mast cells is emerging as critical for the outcome of the tumor-associated immune response. Herein, we showed the occurrence of cell-to-cell interactions between MDSCs and mast cells in the mucosa of patients with colon carcinoma and in the colon and spleen of tumor-bearing mice. Furthermore, we demonstrated that the CT-26 colon cancer cells induced the accumulation of CD11b(+)Gr1(+) immature MDSCs and the recruitment of protumoral mast cells at the tumor site. Using ex vivo analyses, we showed that mast cells have the ability to increase the suppressive properties of spleen-derived monocytic MDSCs, through a mechanism involving IFNγ and nitric oxide production. In addition, we demonstrated that the CD40:CD40L cross-talk between the two cell populations is responsible for the instauration of a proinflammatory microenvironment and for the increase in the production of mediators that can further support MDSC mobilization and tumor growth. In light of these results, interfering with the MDSC:mast cell axis could be a promising approach to abrogate MDSC-related immune suppression and to improve the antitumor immune response.


Assuntos
Comunicação Celular , Neoplasias do Colo/terapia , Mastócitos/imunologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia , Animais , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Linhagem Celular Tumoral , Humanos , Inflamação/metabolismo , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico/metabolismo
19.
Mol Immunol ; 63(1): 69-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24656327

RESUMO

The activation of the transcription factor aryl hydrocarbon receptor (AhR) is modulated by a wide variety of xenobiotics and ligands deriving from products of metabolism. The study of the contribution of AhR to allergic diseases has gained much interest in recent years. Here we discuss the role that environmental factors and metabolic products, particularly acting on AhR-expressing mast cells (MCs), could have in the development of local allergic/atopic response. Thus, this review will cover: a brief overview of the AhR mechanism of action in the immune system; a description of different AhR ligands and their effects to IgE-mediated MC activation in the allergic response, with particular attention to the role of IL-17; a discussion about the potential involvement of AhR in immune tolerance; and a conclusion on human diseases in which direct AhR activation of MC might have a major impact.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Hipersensibilidade/imunologia , Mastócitos/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Humanos , Tolerância Imunológica , Imunoglobulina E/imunologia , Interleucina-13/biossíntese , Interleucina-13/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA