Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Addiction ; 117(4): 1049-1059, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34605095

RESUMO

BACKGROUND AND AIMS: Smoking is associated with increased risk for brain aging/atrophy and dementia. Few studies have examined early associations with brain aging. This study aimed to measure whether adult men with a history of heavier smoking in early mid-life would have older than predicted brain age 16-28 years later. DESIGN: Prospective cohort observational study, utilizing smoking pack years data from average age 40 (early mid-life) predicting predicted brain age difference scores (PBAD) at average ages 56, 62 (later mid-life) and 68 years (early old age). Early mid-life alcohol use was also evaluated. SETTING: Population-based United States sample. PARTICIPANTS/CASES: Participants were male twins of predominantly European ancestry who served in the United States military between 1965 and 1975. Structural magnetic resonance imaging (MRI) began at average age 56. Subsequent study waves included most baseline participants; attrition replacement subjects were added at later waves. MEASUREMENTS: Self-reported smoking information was used to calculate pack years smoked at ages 40, 56, 62, and 68. MRIs were processed with the Brain-Age Regression Analysis and Computation Utility software (BARACUS) program to create PBAD scores (chronological age-predicted brain age) acquired at average ages 56 (n = 493; 2002-08), 62 (n = 408; 2009-14) and 68 (n = 499; 2016-19). FINDINGS: In structural equation modeling, age 40 pack years predicted more advanced age 56 PBAD [ß = -0.144, P = 0.012, 95% confidence interval (CI) = -0.257, -0.032]. Age 40 pack years did not additionally predict PBAD at later ages. Age 40 alcohol consumption, but not a smoking × alcohol interaction, predicted more advanced PBAD at age 56 (ß = -0.166, P = 0.001, 95% CI = -0.261, -0.070) with additional influences at age 62 (ß = -0.115, P = 0.005, 95% CI = -0.195, -0.036). Age 40 alcohol did not predict age 68 PBAD. Within-twin-pair analyses suggested some genetic mechanism partially underlying effects of alcohol, but not smoking, on PBAD. CONCLUSIONS: Heavier smoking and alcohol consumption by age 40 appears to predict advanced brain aging by age 56 in men.


Assuntos
Fumar Cigarros , Adolescente , Adulto , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Fumar Cigarros/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Nicotiana , Adulto Jovem
2.
Quant Imaging Med Surg ; 5(2): 247-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25853083

RESUMO

Diffusion tensor imaging (DTI) has provided considerable insight into our understanding of epilepsy as a network disorder, revealing subtle alterations in white matter microstructure both proximal and distal to the epileptic focus. These white matter changes have been shown to assist with lateralizing the seizure focus, as well as delineating the location/anatomy of key white matter tracts (i.e., optic radiations) for surgical planning. However, only recently have studies emerged describing the utility of DTI for probing cognitive networks in patients with epilepsy and for examining the structural plasticity within these networks both before and after epilepsy surgery. Here, we review the current literature describing the use of DTI for understanding language and memory networks in patients with temporal lobe epilepsy (TLE), as well as the extant literature on networks associated with executive functioning and global intelligence. Studies of memory and language reveal a complex network of frontotemporal fibers that contribute to naming and fluency performance in TLE, and demonstrate that these networks appear to undergo adaptive changes in response to surgical intervention. Although studies of executive functioning and global intelligence have been less conclusive, there is accumulating evidence that aberrant communication between frontoparietal and medial temporal networks may underlie working memory impairment in TLE. More recently, multimodal imaging studies have provided evidence that disruptions within these white matter networks co-localize with functional changes observed on functional MRI. However, structure-function associations are not entirely coherent and may breakdown in patients with TLE, especially those with a left-sided seizure focus. Although the reasons for discordant findings are unclear, small sample sizes, heterogeneity within patient populations and limitations of the current tensor model may account for contradictory and null findings. Improvements in imaging hardware and higher field strengths have now paved the way for the implementation of advanced diffusion techniques, and these advanced models show great promise for improving our understanding of how network dysfunction contributes to cognitive morbidity in TLE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA