Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37463048

RESUMO

Gene therapy is under advanced clinical development for several lysosomal storage disorders. Pompe disease, a debilitating neuromuscular illness affecting infants, children, and adults with different severity, is caused by a deficiency of lysosomal glycogen-degrading enzyme acid α-glucosidase (GAA). Here, we demonstrated that adeno-associated virus-mediated (AAV-mediated) systemic gene transfer reversed glycogen storage in all key therapeutic targets - skeletal and cardiac muscles, the diaphragm, and the central nervous system - in both young and severely affected old Gaa-knockout mice. Furthermore, the therapy reversed secondary cellular abnormalities in skeletal muscle, such as those in autophagy and mTORC1/AMPK signaling. We used an AAV9 vector encoding a chimeric human GAA protein with enhanced uptake and secretion to facilitate efficient spread of the expressed protein among multiple target tissues. These results lay the groundwork for a future clinical development strategy in Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II , alfa-Glucosidases , Criança , Camundongos , Humanos , Animais , alfa-Glucosidases/genética , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética , Camundongos Knockout , Glicogênio/metabolismo
2.
Traffic ; 24(7): 284-307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129279

RESUMO

A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.


Assuntos
Aterosclerose , Ésteres do Colesterol , Humanos , Ésteres do Colesterol/metabolismo , Macrófagos/metabolismo , Lisossomos/metabolismo , Aterosclerose/metabolismo , Exocitose
3.
EMBO Rep ; 24(2): e55472, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36507874

RESUMO

The transcription factor EB (TFEB) regulates energy homeostasis and cellular response to a wide variety of stress conditions, including nutrient deprivation, oxidative stress, organelle damage, and pathogens. Here we identify S401 as a novel phosphorylation site within the TFEB proline-rich domain. Phosphorylation of S401 increases significantly in response to oxidative stress, UVC light, growth factors, and LPS, whereas this increase is prevented by p38 MAPK inhibition or depletion, revealing a new role for p38 MAPK in TFEB regulation. Mutation of S401 in THP1 cells demonstrates that the p38 MAPK/TFEB pathway plays a particularly relevant role during monocyte differentiation into macrophages. TFEB-S401A monocytes fail to upregulate the expression of multiple immune genes in response to PMA-induced differentiation, including critical cytokines, chemokines, and growth factors. Polarization of M0 macrophages into M1 inflammatory macrophages is also aberrant in TFEB-S401A cells. These results indicate that TFEB-S401 phosphorylation links differentiation signals to the transcriptional control of monocyte differentiation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Macrófagos , Monócitos , Proteínas Quinases p38 Ativadas por Mitógeno , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação
4.
Mol Cell ; 82(15): 2732-2734, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931037

RESUMO

Zhang et al. (2022) report that itaconate, a mitochondrial metabolite produced by macrophages upon inflammatory stimuli, activates the master regulator of lysosomal biogenesis TFEB to facilitate clearance of invading bacteria and efficient immune response.


Assuntos
Macrófagos , Succinatos , Antibacterianos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Succinatos/metabolismo
5.
Autophagy ; 18(10): 2333-2349, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35230915

RESUMO

TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) orchestrate the cellular response to a variety of stressors, including nutrient deprivation, oxidative stress and pathogens. Here we describe a novel interaction of TFEB and TFE3 with the FAcilitates Chromatin Transcription (FACT) complex, a heterodimeric histone chaperone consisting of SSRP1 and SUPT16H that mediates nucleosome disassembly and assembly, thus facilitating transcription. Extracellular stimuli, such as nutrient deprivation or oxidative stress, induce nuclear translocation and activation of TFEB and TFE3, which then associate with the FACT complex to regulate stress-induced gene transcription. Depletion of FACT does not affect TFEB activation, stability, or binding to the promoter of target genes. In contrast, reduction of FACT levels by siRNA or treatment with the FACT inhibitor curaxin, severely impairs induction of numerous antioxidant and lysosomal genes, revealing a crucial role of FACT as a regulator of cellular homeostasis. Furthermore, upregulation of antioxidant genes induced by TFEB over-expression is significantly reduced by curaxin, consistent with a role of FACT as a TFEB transcriptional activator. Together, our data show that chromatin remodeling at the promoter of stress-responsive genes by FACT is important for efficient expression of TFEB and TFE3 targets, thus providing a link between environmental changes, chromatin modifications and transcriptional regulation.Abbreviations: ADNP2, ADNP homeobox 2; ATP6V0D1, ATPase H+ transporting V0 subunit d1; ATP6V1A, ATPase H+ transporting V1 subunit A; ATP6V1C1, ATPase H+ transporting V1 subunit C1; CSNK2/CK2, casein kinase 2; CLCN7, chloride voltage-gated channel 7; CTSD, cathepsin D; CTSZ, cathepsin Z; EBSS, earle's balanced salt solution; FACT complex, facilitates chromatin transcription complex; FOXO3, forkhead box O3; HEXA, hexosaminidase subunit alpha; HIF1A, hypoxia inducible factor 1 subunit alpha; HMOX1, heme oxygenase 1; LAMP1, lysosomal associated membrane protein 1; MAFF, MAF bZIP transcription factor F; MAFG, MAF bZIP transcription factor G; MCOLN1, mucolipin TRP cation channel 1; MTORC1, mechanistic target of rapamycin kinase complex 1; NaAsO2, sodium arsenite; POLR2, RNA polymerase II; PPARGC1A, PPARG coactivator 1 alpha; PYROXD1, pyridine nucleotide-disulfide oxidoreductase domain 1; RRAGC, Ras related GTP binding C; SEC13, SEC13 homolog, nuclear pore and COPII coat complex component; SLC38A9, solute carrier family 38 member 9; SSRP1, structure specific recognition protein 1; SUPT16H, SPT16 homolog, facilitates chromatin remodeling subunit; TFEB, transcription factor EB; TFE3, transcription factor binding to IGHM enhancer 3; TXNRD1, thioredoxin reductase 1; UVRAG, UV radiation resistance associated; WDR59, WD repeat domain 59.


Assuntos
Antioxidantes , Canais de Potencial de Receptor Transitório , Adenosina Trifosfatases/metabolismo , Antioxidantes/metabolismo , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Caseína Quinase II/metabolismo , Catepsina D/metabolismo , Catepsina Z/genética , Catepsina Z/metabolismo , Cloretos/metabolismo , Cromatina/metabolismo , Dissulfetos , Guanosina Trifosfato/metabolismo , Heme Oxigenase-1/metabolismo , Hexosaminidases/genética , Hexosaminidases/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleossomos/metabolismo , Nucleotídeos/metabolismo , PPAR gama/genética , Piridinas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Sirolimo , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
6.
Oncogene ; 41(12): 1701-1717, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35110681

RESUMO

Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias de Mama Triplo Negativas , Anticorpos Monoclonais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Imunoconjugados/efeitos adversos , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
EMBO J ; 40(3): e105793, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33314217

RESUMO

Mammalian TFEB and TFE3, as well as their ortholog in Caenorhabditis elegans HLH-30, play an important role in mediating cellular response to a variety of stress conditions, including nutrient deprivation, oxidative stress, and pathogen infection. In this study, we identify a novel mechanism of TFEB/HLH-30 regulation through a cysteine-mediated redox switch. Under stress conditions, TFEB-C212 undergoes oxidation, allowing the formation of intermolecular disulfide bonds that result in TFEB oligomerization. TFEB oligomers display increased resistance to mTORC1-mediated inactivation and are more stable under prolonged stress conditions. Mutation of the only cysteine residue present in HLH-30 (C284) significantly reduced its activity, resulting in developmental defects and increased pathogen susceptibility in worms. Therefore, cysteine oxidation represents a new type of TFEB post-translational modification that functions as a molecular switch to link changes in redox balance with expression of TFEB/HLH-30 target genes.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mutação , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Cisteína , Células HeLa , Humanos , Camundongos , Oxirredução , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Células RAW 264.7
8.
EBioMedicine ; 63: 103166, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341443

RESUMO

Lysosomal storage disorders (LSDs), which number over fifty, are monogenically inherited and caused by mutations in genes encoding proteins that are involved in lysosomal function. Lack of the functional protein results in storage of a distinctive material within the lysosomes, which for years was thought to determine the pathophysiology of the disorder. However, our current view posits that the primary storage material disrupts the normal role of the lysosome in the autophagic pathway resulting in the secondary storage of autophagic debris. It is this "collateral damage" which is common to the LSDs but nonetheless intricately nuanced in each. We have selected five LSDs resulting from defective proteins that govern widely different lysosomal functions including glycogen degradation (Pompe), lysosomal transport (Cystinosis), lysosomal trafficking (Danon), glycolipid degradation (Gaucher) and an unidentified function (Batten) and argue that despite the disparate functions, these proteins, when mutant, all impair the autophagic process uniquely.


Assuntos
Autofagia , Suscetibilidade a Doenças , Doenças por Armazenamento dos Lisossomos/etiologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Animais , Autofagia/genética , Biomarcadores , Cistinose/etiologia , Cistinose/metabolismo , Cistinose/patologia , Gerenciamento Clínico , Humanos , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/terapia , Especificidade de Órgãos/genética
9.
Cell Rep ; 26(13): 3613-3628.e6, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917316

RESUMO

TFEB and TFE3 are transcriptional regulators of the innate immune response, but the mechanisms regulating their activation upon pathogen infection are poorly elucidated. Using C. elegans and mammalian models, we report that the master metabolic modulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN) act upstream of TFEB/TFE3 in the innate immune response, independently of the mTORC1 signaling pathway. In nematodes, loss of FLCN or overexpression of AMPK confers pathogen resistance via activation of TFEB/TFE3-dependent antimicrobial genes, whereas ablation of total AMPK activity abolishes this phenotype. Similarly, in mammalian cells, loss of FLCN or pharmacological activation of AMPK induces TFEB/TFE3-dependent pro-inflammatory cytokine expression. Importantly, a rapid reduction in cellular ATP levels in murine macrophages is observed upon lipopolysaccharide (LPS) treatment accompanied by an acute AMPK activation and TFEB nuclear localization. These results uncover an ancient, highly conserved, and pharmacologically actionable mechanism coupling energy status with innate immunity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Imunidade Inata , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Resistência à Doença , Imunidade Inata/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Elife ; 72018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520728

RESUMO

The transcription factors TFE3 and TFEB cooperate to regulate autophagy induction and lysosome biogenesis in response to starvation. Here we demonstrate that DNA damage activates TFE3 and TFEB in a p53 and mTORC1 dependent manner. RNA-Seq analysis of TFEB/TFE3 double-knockout cells exposed to etoposide reveals a profound dysregulation of the DNA damage response, including upstream regulators and downstream p53 targets. TFE3 and TFEB contribute to sustain p53-dependent response by stabilizing p53 protein levels. In TFEB/TFE3 DKOs, p53 half-life is significantly decreased due to elevated Mdm2 levels. Transcriptional profiles of genes involved in lysosome membrane permeabilization and cell death pathways are dysregulated in TFEB/TFE3-depleted cells. Consequently, prolonged DNA damage results in impaired LMP and apoptosis induction. Finally, expression of multiple genes implicated in cell cycle control is altered in TFEB/TFE3 DKOs, revealing a previously unrecognized role of TFEB and TFE3 in the regulation of cell cycle checkpoints in response to stress.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisossomos/genética , Estresse Fisiológico/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Autofagia/genética , Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fatores de Transcrição/genética
11.
Elife ; 72018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479274

RESUMO

Cytokines and chemokines are produced and secreted by a broad range of immune cells including macrophages. Remarkably, little is known about how these inflammatory mediators are released from the various immune cells. Here, the endolysosomal cation channel TRPML2 is shown to play a direct role in chemokine trafficking and secretion from murine macrophages. To demonstrate acute and direct involvement of TRPML2 in these processes, the first isoform-selective TRPML2 channel agonist was generated, ML2-SA1. ML2-SA1 was not only found to directly stimulate release of the chemokine CCL2 from macrophages but also to stimulate macrophage migration, thus mimicking CCL2 function. Endogenous TRPML2 is expressed in early/recycling endosomes as demonstrated by endolysosomal patch-clamp experimentation and ML2-SA1 promotes trafficking through early/recycling endosomes, suggesting CCL2 being transported and secreted via this pathway. These data provide a direct link between TRPML2 activation, CCL2 release and stimulation of macrophage migration in the innate immune response.


Assuntos
Quimiocina CCL2/metabolismo , Macrófagos/metabolismo , Canais de Potencial de Receptor Transitório/agonistas , Animais , Movimento Celular/efeitos dos fármacos , Fatores Imunológicos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL
12.
J Biol Chem ; 293(32): 12525-12534, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29945972

RESUMO

Adaptations and responses to stress conditions are fundamental processes that all cells must accomplish to maintain or restore cellular homeostasis. Cells have a plethora of response pathways to mitigate the effect of different environmental stressors. The transcriptional regulators transcription factor EB (TFEB) and transcription factor binding to IGHM enhancer 3 (TFE3) play a key role in the control of these stress pathways. Therefore, understanding their regulation under different stress conditions is of great interest. Here, using a range of human and murine cells, we show that TFEB and TFE3 are activated upon induction of acute oxidative stress by sodium arsenite via an mTOR complex 1 (mTORC1)-independent process. We found that the mechanism of arsenite-stimulated TFEB and TFE3 activation instead involves protein phosphatase 2A (PP2A)-mediated dephosphorylation at Ser-211 and Ser-321, respectively. Depletion of either the catalytic (PPP2CA+B) or regulatory (PPP2R2A/B55α) subunits of PP2A, as well as PP2A inactivation with the specific inhibitor okadaic acid, abolished TFEB and TFE3 activation in response to sodium arsenite. Conversely, PP2A activation by ceramide or the sphingosine-like compound FTY720 was sufficient to induce TFE3 nuclear translocation. MS analysis revealed that PP2A dephosphorylates TFEB at several residues, including Ser-109, Ser-114, Ser-122, and Ser-211, thus facilitating TFEB activation. Overall, this work identifies a critical mechanism that activates TFEB and TFE3 without turning off mTORC1 activity. We propose that this mechanism may enable some cell types such as immune or cancer cells that require simultaneous TFEB/TFE3 and mTORC1 signaling to survive and achieve robust cell growth in stressful environments.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Estresse Oxidativo , Proteína Fosfatase 2/farmacologia , Animais , Arsenitos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Cultivadas , Humanos , Camundongos , Fosforilação , Transdução de Sinais , Compostos de Sódio/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764979

RESUMO

The MiT-TFE family of basic helix-loop-helix leucine-zipper transcription factors includes four members: TFEB, TFE3, TFEC, and MITF Originally described as oncogenes, these factors play a major role as regulators of lysosome biogenesis, cellular energy homeostasis, and autophagy. An important mechanism by which these transcription factors are regulated involves their shuttling between the surface of lysosomes, the cytoplasm, and the nucleus. Such dynamic changes in subcellular localization occur in response to nutrient fluctuations and various forms of cell stress and are mediated by changes in the phosphorylation of multiple conserved amino acids. Major kinases responsible for MiT-TFE protein phosphorylation include mTOR, ERK, GSK3, and AKT In addition, calcineurin de-phosphorylates MiT-TFE proteins in response to lysosomal calcium release. Thus, through changes in the phosphorylation state of MiT-TFE proteins, lysosome function is coordinated with the cellular metabolic state and cellular demands. This review summarizes the evidence supporting MiT-TFE regulation by phosphorylation at multiple key sites. Elucidation of such regulatory mechanisms is of fundamental importance to understand how these transcription factors contribute to both health and disease.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Núcleo Celular/genética , Citoplasma/genética , Metabolismo Energético/genética , Autofagia/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/genética
14.
J Cell Sci ; 131(10)2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29661845

RESUMO

Lysosomes receive and degrade cargo from endocytosis, phagocytosis and autophagy. They also play an important role in sensing and instructing cells on their metabolic state. The lipid kinase PIKfyve generates phosphatidylinositol-3,5-bisphosphate to modulate lysosome function. PIKfyve inhibition leads to impaired degradative capacity, ion dysregulation, abated autophagic flux and a massive enlargement of lysosomes. Collectively, this leads to various physiological defects, including embryonic lethality, neurodegeneration and overt inflammation. The reasons for such drastic lysosome enlargement remain unclear. Here, we examined whether biosynthesis and/or fusion-fission dynamics contribute to swelling. First, we show that PIKfyve inhibition activates TFEB, TFE3 and MITF, enhancing lysosome gene expression. However, this did not augment lysosomal protein levels during acute PIKfyve inhibition, and deletion of TFEB and/or related proteins did not impair lysosome swelling. Instead, PIKfyve inhibition led to fewer but enlarged lysosomes, suggesting that an imbalance favouring lysosome fusion over fission causes lysosome enlargement. Indeed, conditions that abated fusion curtailed lysosome swelling in PIKfyve-inhibited cells.


Assuntos
Lisossomos/química , Lisossomos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Íons/metabolismo , Lisossomos/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo
15.
Nat Commun ; 8(1): 1580, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146937

RESUMO

Lysosomal distribution is linked to the role of lysosomes in many cellular functions, including autophagosome degradation, cholesterol homeostasis, antigen presentation, and cell invasion. Alterations in lysosomal positioning contribute to different human pathologies, such as cancer, neurodegeneration, and lysosomal storage diseases. Here we report the identification of a novel mechanism of lysosomal trafficking regulation. We found that the lysosomal transmembrane protein TMEM55B recruits JIP4 to the lysosomal surface, inducing dynein-dependent transport of lysosomes toward the microtubules minus-end. TMEM55B overexpression causes lysosomes to collapse into the cell center, whereas depletion of either TMEM55B or JIP4 results in dispersion toward the cell periphery. TMEM55B levels are transcriptionally upregulated following TFEB and TFE3 activation by starvation or cholesterol-induced lysosomal stress. TMEM55B or JIP4 depletion abolishes starvation-induced retrograde lysosomal transport and prevents autophagosome-lysosome fusion. Overall our data suggest that the TFEB/TMEM55B/JIP4 pathway coordinates lysosome movement in response to a variety of stress conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Microtúbulos/fisiologia , Fosfatases de Fosfoinositídeos/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Transporte Vesicular/genética
16.
ACS Med Chem Lett ; 8(1): 90-95, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28105281

RESUMO

Guided by antiproliferative activity in MIA PaCa-2 cells, we have performed preliminary structure-activity relationship studies on N-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)benzamides. Two selected compounds showed submicromolar antiproliferative activity and good metabolic stability. Both compounds reduced mTORC1 activity and increased autophagy at the basal level. In addition, they disrupted autophagic flux by interfering with mTORC1 reactivation and clearance of LC3-II under starvation/refeed conditions, as evidenced by accumulation of LC3-II and abnormal LC3 labeled punctae. Therefore, N-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)benzamides may represent a new class of autophagy modulators that possesses potent anticancer activity and potentially a novel mechanism of action.

17.
Aging Cell ; 16(2): 349-359, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28083894

RESUMO

The dry (nonneovascular) form of age-related macular degeneration (AMD), a leading cause of blindness in the elderly, has few, if any, treatment options at present. It is characterized by early accumulation of cellular waste products in the retinal pigmented epithelium (RPE); rejuvenating impaired lysosome function in RPE is a well-justified target for treatment. It is now clear that amino acids and vacuolar-type H+ -ATPase (V-ATPase) regulate the mechanistic target of rapamycin, complex 1 (mTORC1) signaling in lysosomes. Here, we provide evidence for the first time that the amino acid transporter SLC36A4/proton-dependent amino acid transporter (PAT4) regulates the amino acid pool in the lysosomes of RPE. In Cryba1 (gene encoding ßA3/A1-crystallin) KO (knockout) mice, where PAT4 and amino acid levels are increased in the RPE, the transcription factors EB (TFEB) and E3 (TFE3) are retained in the cytoplasm, even after 24 h of fasting. Consequently, genes in the coordinated lysosomal expression and regulation (CLEAR) network are not activated, and lysosomal function remains low. As these mice age, expression of RPE65 and lecithin retinol acyltransferase (LRAT), two vital visual cycle proteins, decreases in the RPE. A defective visual cycle would possibly slow down the regeneration of new photoreceptor outer segments (POS). Further, photoreceptor degeneration also becomes obvious during aging, reminiscent of human dry AMD disease. Electron microscopy shows basal laminar deposits in Bruch's membrane, a hallmark of development of AMD. For dry AMD patients, targeting PAT4/V-ATPase in the lysosomes of RPE cells may be an effective means of preventing or delaying disease progression.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Células Epiteliais/metabolismo , Complexos Multiproteicos/metabolismo , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cristalinas/metabolismo , Citosol/metabolismo , Células Epiteliais/ultraestrutura , Redes Reguladoras de Genes , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Fosforilação , Ligação Proteica , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Vias Visuais/metabolismo , Cadeia A de beta-Cristalina
18.
Genes Dev ; 30(22): 2551-2564, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913603

RESUMO

Noncanonical mechanistic target of rapamycin (mTOR) pathways remain poorly understood. Mutations in the tumor suppressor folliculin (FLCN) cause Birt-Hogg-Dubé syndrome, a hamartomatous disease marked by mitochondria-rich kidney tumors. FLCN functionally interacts with mTOR and is expressed in most tissues, but its role in fat has not been explored. We show here that FLCN regulates adipose tissue browning via mTOR and the transcription factor TFE3. Adipose-specific deletion of FLCN relieves mTOR-dependent cytoplasmic retention of TFE3, leading to direct induction of the PGC-1 transcriptional coactivators, drivers of mitochondrial biogenesis and the browning program. Cytoplasmic retention of TFE3 by mTOR is sensitive to ambient amino acids, is independent of growth factor and tuberous sclerosis complex (TSC) signaling, is driven by RagC/D, and is separable from canonical mTOR signaling to S6K. Codeletion of TFE3 in adipose-specific FLCN knockout animals rescues adipose tissue browning, as does codeletion of PGC-1ß. Conversely, inducible expression of PGC-1ß in white adipose tissue is sufficient to induce beige fat gene expression in vivo. These data thus unveil a novel FLCN-mTOR-TFE3-PGC-1ß pathway-separate from the canonical TSC-mTOR-S6K pathway-that regulates browning of adipose tissue.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Respiração Celular/genética , Citoplasma/metabolismo , Deleção de Genes , Masculino , Camundongos , Mitocôndrias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
19.
Annu Rev Cell Dev Biol ; 32: 255-278, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298091

RESUMO

In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.


Assuntos
Adaptação Fisiológica , Lisossomos/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Animais , Autofagia/genética , Metabolismo Energético , Humanos
20.
Autophagy ; 12(8): 1240-58, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27171064

RESUMO

The activation of transcription factors is critical to ensure an effective defense against pathogens. In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response. By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines. Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells. These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Imunidade Inata , Macrófagos/metabolismo , Animais , Autofagia , Núcleo Celular/metabolismo , Citosol/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inflamação , Ativação de Macrófagos , Masculino , Camundongos , Microglia/metabolismo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA